CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "User:Wataru Saburi"

From CAZypedia
Jump to navigation Jump to search
(Created page with "200px|right '''This is an empty template to help you get started with composing your User page.''' You should begin by opening this page for ed...")
 
Line 1: Line 1:
[[Image:Blank_user-200px.png|200px|right]]
 
'''This is an empty template to help you get started with composing your User page.'''
 
  
You should begin by opening this page for editing by clicking on the Edit tab above.  Your biography goes in this area of the page.
 
  
* See [[User:Gerlind_Sulzenbacher]] for an example.  You may copy text from this example by opening the page in another browser window and clicking the "Edit" tab.
+
[[Image:Saburi2.jpg]]
* Add your publications in the list below using PubMed IDs and cite them in the text like this <cite>Gilbert2008</cite>.
 
* Please upload a picture of yourself using the "Upload file" link in the Toolbox section of the left menu, and then replace the Image filename with your own.
 
  
''More specific help on these steps is available from the links under the "For contributors" section of the left page menu.''
+
'''Wataru Saburi''' is an assistant professor at Laboratory of Biochemistry in Research Faculty of Agriculture, Hokkaido University (Sapporo, Japan). He obtained Ph. D from Graduate School of Agriculture, Hokkaido University in 2006, under the supervision of Professor Atsuo Kimura. He joined the Research Institute of Nihon Shokuhin Kako Co. Ltd. as a researcher (2006-2010), and developed functional oligosaccharides produced from starch. His research interests are structures and functions of carbohydrate active enzymes and efficient synthesis of functional oligosaccharides. He has studied about
 +
 
 +
* [[GH1]] rice β-glucosidase  <cite>Himeno2013</cite>
 +
* [[GH13]] Bacillus sp. AAH-31 α-amylase <cite>Kim2012 Saburia2013</cite>
 +
* [[GH13]] Streptococcus mutans dextran glucosidase <cite>Saburi2006 Saburi2007 Hondoh2008 Kobayashi2011 Saburib2013</cite>
 +
* [[GH13]] Halomonas sp. H11 α-glucosidase <cite>Ojima2012</cite>
 +
* [[GH13]] Bacillus clarkii γ-cyclodextrinase <cite>Nakagawa2008</cite>
 +
* [[GH94]] Ruminococcus albus cellobiose phosphorylase <cite>Hamura2012 Hamura2013</cite>
 +
* [[GH94]] Ruminococcus albus cellodextrin phosphorylase <cite>Sawano2013</cite>
 +
* [[GH130]] Ruminococcus albus 4-O-β-mannosylglucose phosphorylase (RaMP1) <cite>Kawahara2012</cite>
 +
* [[GH130]] Rhodothermus marinus 4-O-β-mannosylglucose phosphorylase <cite>Jaito2014</cite>
 +
* [[GH130]] Ruminococcus albus β-1,4-mannooligosaccharide phosphorylase (RaMP2) <cite>Kawahara2012</cite>
  
  
Line 15: Line 21:
  
 
<biblio>
 
<biblio>
#Gilbert2008 pmid=18430603
+
#Himeno2013 pmid=23649259
 +
#>Kim2012 pmid=22785486
 +
#>Saburia2013 pmid=24018662
 +
#>Saburi2006 pmid=16503208
 +
#>Saburi2007 pmid=17768352
 +
 
 +
#>Hondoh2008 pmid=18395742
 +
 
 +
#>Kobayashi2011 pmid=21821929
 +
#>Saburib2013 pmid=24052257
 +
#>Ojima2012 pmid=22226947
 +
#>Nakagawa2008 pmid=18824139
 +
 
 +
#>Hamura2012 pmid=22484959
 +
 
 +
#>Hamura2013 pmid=23845516
 +
#>Sawano2013 pmid=23802549
 +
#>Kawahara2012 pmid=23093406
 +
#>Jaito2014 pmid=25036679
 +
 
 +
 
  
 
</biblio>
 
</biblio>
 +
  
 
<!-- Do not remove this Category tag -->
 
<!-- Do not remove this Category tag -->
 
[[Category:Contributors|Saburi,Wataru]]
 
[[Category:Contributors|Saburi,Wataru]]

Revision as of 15:23, 13 October 2014


Saburi2.jpg

Wataru Saburi is an assistant professor at Laboratory of Biochemistry in Research Faculty of Agriculture, Hokkaido University (Sapporo, Japan). He obtained Ph. D from Graduate School of Agriculture, Hokkaido University in 2006, under the supervision of Professor Atsuo Kimura. He joined the Research Institute of Nihon Shokuhin Kako Co. Ltd. as a researcher (2006-2010), and developed functional oligosaccharides produced from starch. His research interests are structures and functions of carbohydrate active enzymes and efficient synthesis of functional oligosaccharides. He has studied about

  • GH1 rice β-glucosidase [1]
  • GH13 Bacillus sp. AAH-31 α-amylase [2, 3]
  • GH13 Streptococcus mutans dextran glucosidase [4, 5, 6, 7, 8]
  • GH13 Halomonas sp. H11 α-glucosidase [9]
  • GH13 Bacillus clarkii γ-cyclodextrinase [10]
  • GH94 Ruminococcus albus cellobiose phosphorylase [11, 12]
  • GH94 Ruminococcus albus cellodextrin phosphorylase [13]
  • GH130 Ruminococcus albus 4-O-β-mannosylglucose phosphorylase (RaMP1) [14]
  • GH130 Rhodothermus marinus 4-O-β-mannosylglucose phosphorylase [15]
  • GH130 Ruminococcus albus β-1,4-mannooligosaccharide phosphorylase (RaMP2) [14]



  1. Himeno N, Saburi W, Wakuta S, Takeda R, Matsuura H, Nabeta K, Sansenya S, Ketudat Cairns JR, Mori H, Imai R, and Matsui H. (2013). Identification of rice β-glucosidase with high hydrolytic activity towards salicylic acid β-D-glucoside. Biosci Biotechnol Biochem. 2013;77(5):934-9. DOI:10.1271/bbb.120889 | PubMed ID:23649259 [Himeno2013]
  2. Kim DH, Morimoto N, Saburi W, Mukai A, Imoto K, Takehana T, Koike S, Mori H, and Matsui H. (2012). Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31. Biosci Biotechnol Biochem. 2012;76(7):1378-83. DOI:10.1271/bbb.120164 | PubMed ID:22785486 [Kim2012]
  3. Saburi W, Morimoto N, Mukai A, Kim DH, Takehana T, Koike S, Matsui H, and Mori H. (2013). A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes. Biosci Biotechnol Biochem. 2013;77(9):1867-73. DOI:10.1271/bbb.130284 | PubMed ID:24018662 [Saburia2013]
  4. Saburi W, Mori H, Saito S, Okuyama M, and Kimura A. (2006). Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim Biophys Acta. 2006;1764(4):688-98. DOI:10.1016/j.bbapap.2006.01.012 | PubMed ID:16503208 [Saburi2006]
  5. Saburi W, Hondoh H, Unno H, Okuyama M, Mori H, Nakada T, Matsuura Y, and Kimura A. (2007). Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(Pt 9):774-6. DOI:10.1107/S174430910703936X | PubMed ID:17768352 [Saburi2007]
  6. Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, and Kimura A. (2008). Substrate recognition mechanism of alpha-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J Mol Biol. 2008;378(4):913-22. DOI:10.1016/j.jmb.2008.03.016 | PubMed ID:18395742 [Hondoh2008]
  7. Kobayashi M, Hondoh H, Mori H, Saburi W, Okuyama M, and Kimura A. (2011). Calcium ion-dependent increase in thermostability of dextran glucosidase from Streptococcus mutans. Biosci Biotechnol Biochem. 2011;75(8):1557-63. DOI:10.1271/bbb.110256 | PubMed ID:21821929 [Kobayashi2011]
  8. Saburi W, Kobayashi M, Mori H, Okuyama M, and Kimura A. (2013). Replacement of the catalytic nucleophile aspartyl residue of dextran glucosidase by cysteine sulfinate enhances transglycosylation activity. J Biol Chem. 2013;288(44):31670-7. DOI:10.1074/jbc.M113.491449 | PubMed ID:24052257 [Saburib2013]
  9. Ojima T, Saburi W, Yamamoto T, and Kudo T. (2012). Characterization of Halomonas sp. strain H11 α-glucosidase activated by monovalent cations and its application for efficient synthesis of α-D-glucosylglycerol. Appl Environ Microbiol. 2012;78(6):1836-45. DOI:10.1128/AEM.07514-11 | PubMed ID:22226947 [Ojima2012]
  10. Nakagawa Y, Saburi W, Takada M, Hatada Y, and Horikoshi K. (2008). Gene cloning and enzymatic characteristics of a novel gamma-cyclodextrin-specific cyclodextrinase from alkalophilic Bacillus clarkii 7364. Biochim Biophys Acta. 2008;1784(12):2004-11. DOI:10.1016/j.bbapap.2008.08.022 | PubMed ID:18824139 [Nakagawa2008]
  11. Hamura K, Saburi W, Abe S, Morimoto N, Taguchi H, Mori H, and Matsui H. (2012). Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis. Biosci Biotechnol Biochem. 2012;76(4):812-8. DOI:10.1271/bbb.110954 | PubMed ID:22484959 [Hamura2012]
  12. Hamura K, Saburi W, Matsui H, and Mori H. (2013). Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Carbohydr Res. 2013;379:21-5. DOI:10.1016/j.carres.2013.06.010 | PubMed ID:23845516 [Hamura2013]
  13. Sawano T, Saburi W, Hamura K, Matsui H, and Mori H. (2013). Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. FEBS J. 2013;280(18):4463-73. DOI:10.1111/febs.12408 | PubMed ID:23802549 [Sawano2013]
  14. Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, and Matsui H. (2012). Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. J Biol Chem. 2012;287(50):42389-99. DOI:10.1074/jbc.M112.390336 | PubMed ID:23093406 [Kawahara2012]
  15. Jaito N, Saburi W, Odaka R, Kido Y, Hamura K, Nishimoto M, Kitaoka M, Matsui H, and Mori H. (2014). Characterization of a thermophilic 4-O-β-D-mannosyl-D-glucose phosphorylase from Rhodothermus marinus. Biosci Biotechnol Biochem. 2014;78(2):263-70. DOI:10.1080/09168451.2014.882760 | PubMed ID:25036679 [Jaito2014]

All Medline abstracts: PubMed