CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Auxiliary Activity Family 5

From CAZypedia
Revision as of 16:30, 10 September 2021 by Maria Cleveland (talk | contribs)
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Auxiliary Activity Family AA5
Fold Seven-bladed β-propeller
Mechanism Copper Radical Oxidase
Active site residues known
CAZy DB link
http://www.cazy.org/AA5.html

General Properties

Enzymes from the CAZy family AA5 are mononuclear copper-radical oxidases (CRO) that perform catalysis independently of complex organic cofactors such as FAD or NADP and use oxygen as their electron acceptor (EC 1.1.3.-).Family AA5 enzymes are classified in two subfamilies: subfamily AA5_1 contains characterized glyoxal oxidases (EC 1.2.3.15) [1] and subfamily AA5_2 contains galactose oxidases (EC 1.1.3.9) [2], as well as the more recently discovered raffinose oxidases [3, 4], aliphatic alcohol oxidases (EC 1.1.3.13) [4, 5, 6] and aryl alcohol oxidase (EC 1.1.3.7) [7, 8].

The most studied enzyme in subfamily AA5_1 is the glyoxal oxidase from Phanerochaete chrysosporium discovered in 1987 [9]. For subfamily AA5_2, the archetypal galactose-6 oxidase from Fusarium graminearum (FgrGalOx) was first reported in 1959 from cultures of Polyporus circinatus (later renamed Fusarium graminearum [10, 11]. While this first report already established FgrGalOx as a metalloenzyme; its copper requirement was later confirmed [12]. Until 2015 the characterized enzymes from the AA5_2 subfamily were found to exhibit mainly galactose oxidase activity, but since then novel non-carbohydrate oxidase enzymes were found [4, 5, 6, 7, 8].

Substrate Specificities

Content is to be added here.

Authors may get an idea of what to put in each field from Curator Approved Auxiliary Activity Families and Glycoside Hydrolase Families. (TIP: Right click with your mouse and open this link in a new browser window...)

In the meantime, please see these references for an essential introduction to the CAZy classification system: [13, 14].

Kinetics and Mechanism

AA5 enzymes oxidize their substrate with concurrent reduction of oxygen to hydrogen peroxide in a two-electron process mediated through a free-radical-coupled copper complex mediated through the presence of a redox active Tyr-Cys cofactor. In AA5_2 the Tyr-Cys cofactor exhibits an unusually low reduction potential (+275 mV) [15, 16, 17] compared to unmodified tyrosine in solution (> +800 mV) or in other enzymatic systems [18]. Several factors could contribute to this phenomenon by increasing the stability of the protein free radical including π-stacking with aromatic residues and the electron donating effect of the thioether linkage [2, 19, 20]. In contrast, AA5_1 have reduction potential of around +640 mV [21] which could explain the different oxidizing power of the two subfamilies [17, 22]. One reason for the higher reduction potential of glyoxal oxidases could be subtitution of the secondary shell amino acid Trp in AA5_2 with a His in AA5_1 [17, 22]. In the archetypal AA5_2 member, FgrGalOx, the Trp290His substitution increased the redox potential of the resulting enzyme from +400 mV to +730 mV [23]; however, it also decreased the catalytic efficiency by 1000-fold [24] and perturbed the stability of the [Cu2+ Tyr·] metallo-radical complex at neutral pH [25]. CgrAlcOx and CgrAAO have been speculated to have a lower redox potential than FgrGalOx due to the secondary amino acid substitution (Phe in CgrAlcOx and Tyr in CgrAAO) [5, 7].

A substantial amount of spectroscopic evidence has supported a ping-pong mechanism for AA5 enzymes [2, 22, 24, 26, 27, 28, 29, 30], including some theoretical and biomimetic models possessing mechanistic similarities [31, 32]. The reaction progresses through a two-step process: the first half-reaction performs the oxidation of the substrate, while the second half-reaction regenerates the oxidation state of the active-site copper with concurrent reduction of molecular oxygen to hydrogen peroxide. Each half reaction consists of three steps: proton transfer (PT), hydrogen atom transfer (HAT) and an electron transfer (ET).

Other work, focused on optimizing the industrial potential of AA5 enzymes, has shown that AA5_2 enzymes have increased activity with the addition of peroxidases (horse-radish peroxidase and catalase) and small molecule activators (potassium ferricyanide and magnesium (III) acetate)[33, 34, 35, 36, 37].

Catalytic Residues

The redox-active center of AA5 oxidases comprises a copper ion that is stabilized by two tyrosines and two histidines (in FgrGalOx, these are Tyr272, Tyr495, His496, His581), resulting in a distorted square pyramidal geometry [2, 26, 38, 39]. Based on the copper coordination environment, AA5 proteins are type 2 “non-blue” copper category due to the nitrogen and oxygen ligands [40].

The unique feature of The AA5 is the covalently linked equatorial tyrosine with an adjacent cysteine by a thioether bond (Tyr 272 and Cys 228 in the archetypal FgrGalOx) [40, 41]. The thioether linkage forms spontaneously in the presence of copper and has been shown to stabilize the radical though delocalization that forms on the equatorial tyrosine during catalysis [42].

Another important feature of AA5 enzymes is a secondary shell amino acid that is located on top of the tyrosine-cysteine cofactor. It has been speculated to be critical in determining the substrate specificity, radial stability and redox activity by hydrogen bonding, delocalization and/or by protecting the thioether bond from solvent [1, 2, 20, 22]. This residue in AA5_1 has been conserved as a histidine [22], while characterized AA5_2s enzymes have an aromatic residue at this position: a tryptophan in galactose oxidases (W290 in FgrGalOx) [4, 20], a phenylalanine in the Colletotrichum aliphatic alcohol oxidases [5], and a tyrosine in the raffinose oxidases [3, 4] and aryl alcohol oxidase from Colletotrichum graminicola [3, 7]. Furthermore, an AA5 enzyme from Streptomyces lividans with activity on glycolaldehyde possesses a tryptophan as the stacking secondary shell residue whose indole ring is oriented differently compared to FgrGalOx [43, 44].

Three-dimensional Structures

Figure X. Crystal structure of copper radical oxidases. A. FgrGalOx (PDB ID 1GOF), Copper ion in orange and B. CgrAlcOx (PDB ID 5C86), Copper ion in grey. This figure is adapted from [5].

AA5 share a seven-bladed β-propeller fold [5, 7, 40] as the catalytic domain containing the active site. The archetypal FgrGalOx contains three domains: domain 1 has a “β sandwich” structure identified as a carbohydrate binding module (CBM32) with affinity for galactose, domain 2 is the catalytic domain and domain 3 is the smallest, which forms a hydrogen bonding network to stabilize domain 2 [40]. Other characterized AA5_2 enzymes from Fusarium species contain CBM32 [4, 45, 46, 47], even though some do not display canonical galactose oxidase activity (ex. FgrAAO and FoxAAO) [4, 8]. In contrast, CgrAlcOx, CglAlcOx and ChiAlcOx do not poses any CBM [5, 6], while CgrAAO and CgrRafOx have a PAN domain present instead [3, 7]. PorAlcOx contained a WSC domain that was able to bind xylans and fungal chitin/β-1,3-glucan, implicating the domains involvement in enzyme anchoring on the plant surface [6]. In addition, the fusion of a galactose oxidase with a CBM29 has shown an increase in catalytic efficiency of the construct on galactose-containing hemicelluloses compared to WT [48].

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Daou M and Faulds CB. (2017). Glyoxal oxidases: their nature and properties. World J Microbiol Biotechnol. 2017;33(5):87. DOI:10.1007/s11274-017-2254-1 | PubMed ID:28390013 [Daou2017]
  2. Whittaker JW (2003). Free radical catalysis by galactose oxidase. Chem Rev. 2003;103(6):2347-63. DOI:10.1021/cr020425z | PubMed ID:12797833 [Whittaker2003]
  3. Andberg M, Mollerup F, Parikka K, Koutaniemi S, Boer H, Juvonen M, Master E, Tenkanen M, and Kruus K. (2017). A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Appl Environ Microbiol. 2017;83(20). DOI:10.1128/AEM.01383-17 | PubMed ID:28778886 [Andberg2017]
  4. pmid=

    [Cleveland2021b]
  5. Yin DT, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin JG, Henrissat B, Walton PH, Davies GJ, and Brumer H. (2015). Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun. 2015;6:10197. DOI:10.1038/ncomms10197 | PubMed ID:26680532 [Yin2015]
  6. Oide S, Tanaka Y, Watanabe A, and Inui M. (2019). Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme Microb Technol. 2019;125:13-20. DOI:10.1016/j.enzmictec.2019.02.009 | PubMed ID:30885320 [Oide2019]
  7. Mathieu, Y., Offen, W. A., Forget, S. M., Ciano, L., Viborg, A. H., Blagova, E., Henrissat, B., Walton, P.H, Davies, G.J, and Brumer, H. (2020). Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catalysis, 10(5), 3042-3058. https://pubs.acs.org/doi/abs/10.1021/acscatal.9b04727

    [Mathieu2020]
  8. Cleveland M, Lafond M, Xia FR, Chung R, Mulyk P, Hein JE, and Brumer H. (2021). Two Fusarium copper radical oxidases with high activity on aryl alcohols. Biotechnol Biofuels. 2021;14(1):138. DOI:10.1186/s13068-021-01984-0 | PubMed ID:34134727 [Cleveland2021a]
  9. Kersten PJ and Kirk TK. (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987;169(5):2195-201. DOI:10.1128/jb.169.5.2195-2201.1987 | PubMed ID:3553159 [Kersten1987]
  10. Ögel, Z. B.; Brayford, D.; McPherson, M. J., (1994). Cellulose-triggered sporulation in the galactose oxidase-producing fungus Cladobotryum (Dactylium) dendroides NRRL 2903 and its re-identification as a species of Fusarium. Mycol. Res., 98 (4), 474-480. https://doi.org/10.1016/j.pep.2014.12.010

    [Ogel1994]
  11. COOPER JA, SMITH W, BACILA M, and MEDINA H. (1959). Galactose oxidase from Polyporus circinatus, Fr. J Biol Chem. 1959;234(3):445-8. | Google Books | Open Library PubMed ID:13641238 [Cooper1959]
  12. AMARAL D, BERNSTEIN L, MORSE D, and HORECKER BL. (1963). Galactose oxidase of Polyporus circinatus: a copper enzyme. J Biol Chem. 1963;238:2281-4. | Google Books | Open Library PubMed ID:14012475 [Amaral1963]
  13. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  14. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 | PubMed ID:18838391 [Cantarel2009]
  15. Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, and Whittaker JW. (1996). Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem. 1996;271(2):681-7. DOI:10.1074/jbc.271.2.681 | PubMed ID:8557673 [Whittaker1996]
  16. Ito N, Phillips SE, Yadav KD, and Knowles PF. (1994). Crystal structure of a free radical enzyme, galactose oxidase. J Mol Biol. 1994;238(5):794-814. DOI:10.1006/jmbi.1994.1335 | PubMed ID:8182749 [Ito1994]
  17. Paukner R, Staudigl P, Choosri W, Sygmund C, Halada P, Haltrich D, and Leitner C. (2014). Galactose oxidase from Fusarium oxysporum--expression in E. coli and P. pastoris and biochemical characterization. PLoS One. 2014;9(6):e100116. DOI:10.1371/journal.pone.0100116 | PubMed ID:24967652 [Paukner2014]
  18. Paukner R, Staudigl P, Choosri W, Haltrich D, and Leitner C. (2015). Expression, purification, and characterization of galactose oxidase of Fusarium sambucinum in E. coli. Protein Expr Purif. 2015;108:73-79. DOI:10.1016/j.pep.2014.12.010 | PubMed ID:25543085 [Paukner2015]
  19. Faria CB, de Castro FF, Martim DB, Abe CAL, Prates KV, de Oliveira MAS, and Barbosa-Tessmann IP. (2019). Production of Galactose Oxidase Inside the Fusarium fujikuroi Species Complex and Recombinant Expression and Characterization of the Galactose Oxidase GaoA Protein from Fusarium subglutinans. Mol Biotechnol. 2019;61(9):633-649. DOI:10.1007/s12033-019-00190-6 | PubMed ID:31177409 [Faria2019]
  20. Mollerup F and Master E. (2016). Influence of a family 29 carbohydrate binding module on the recombinant production of galactose oxidase in Pichia pastoris. Data Brief. 2016;6:176-83. DOI:10.1016/j.dib.2015.11.032 | PubMed ID:26858983 [Mollerup2016]

All Medline abstracts: PubMed