CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Carbohydrate-active enzymes"

From CAZypedia
Jump to navigation Jump to search
(New page: <!-- Sourced from the Template:Biolerplate page by the preloader.php script --> '''The text below is a template to help you create a consistent layout for GH entries. To get an idea of w...)
 
Line 1: Line 1:
 
<!-- Sourced from the Template:Biolerplate page by the preloader.php script -->
 
<!-- Sourced from the Template:Biolerplate page by the preloader.php script -->
 
'''The text below is a template to help you create a consistent layout for GH entries.  To get an idea of what to put in each field, save this edit and have a look at any of the GH families by following this link: [[:Category:Glycoside Hydrolase Families]]''' ''(TIP: Right click with your mouse and open the link in a new browser window...)''
 
 
Make sure to delete this text and the four dashes (line) below when you are done with your page!
 
----
 
 
 
 
  
 
* [[Author]]: [[User:StephenWithers|Harry Brumer]]
 
* [[Author]]: [[User:StephenWithers|Harry Brumer]]

Revision as of 03:22, 9 July 2009



Glycoside Hydrolase Family GHnn
Clan GH-x
Mechanism retaining/inverting
Active site residues known/not known
CAZy DB link
http://www.cazy.org/fam/GHnn.html
    Normal   0         false   false   false                             MicrosoftInternetExplorer4

Enzymatic formation and cleavage of the bond between two sugars or between a sugar and another group can occur by hydrolysis to give the free sugar (glycosidases or glycoside hydrolases), by transglycosylation to give a new glycoside (transglycosidases), by phosphorolysis to give the sugar-1-phosphate (phosphorylases) or by elimination to give unsaturated sugar products (lyases). The principal enzymes that catalyze glycoside synthesis are nucleotide phosphosugar-dependent glycosyltransferases.

Substrate specificities

Kinetics and Mechanism

Catalytic Residues

Three-dimensional structures

Family Firsts

First sterochemistry determination
Cite some reference here, with a short explanation [1].
First catalytic nucleophile identification
First general acid/base residue identification
First 3-D structure

References

  1. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n | PubMed ID:17323919 [1]

[[Category:Glycoside Hydrolase Families]]