CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Carbohydrate Binding Module Family 67"

From CAZypedia
Jump to navigation Jump to search
m
m
Line 44: Line 44:
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
#Cantarel2009 pmid=18838391
+
#Fujimoto2013 pmid=23486481
 +
#Cui2007 pmid=17936784
 
#DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. ''The Biochemist'', vol. 30, no. 4., pp. 26-32. [http://www.biochemist.org/bio/03004/0026/030040026.pdf Download PDF version].
 
#DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. ''The Biochemist'', vol. 30, no. 4., pp. 26-32. [http://www.biochemist.org/bio/03004/0026/030040026.pdf Download PDF version].
 
#Boraston2004 pmid=15214846
 
#Boraston2004 pmid=15214846

Revision as of 19:24, 9 June 2018

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


CAZy DB link
http://www.cazy.org/CBM67.html

Ligand specificities

The sugar binding structure of a GH78 α-l-rhamnosidase from Streptomyces avermitilis(SaRha78A) revealed a l-rhamnose binding module CBM67 (SaCBM67) within the six-domain arrangement. SaCBM67 bound l-rhamnose and l-mannose with a Kaof 7.2 × 103M−1and 3.6 × 103M−1, andfree energy of binding ΔG of −5.3 kcal/mol and −4.8 kcal/mol, respectively, but did not bind to l-rhamnose in the presence of 5 mM EDTA. Similarly the D179A and N180A mutants of SaCBM67, in which removed calcium-mediated and direct hydrogen bonds withl-rhamnose, abolish ligand binding, confirming the importance of calcium in the binding of SaCBM67 to its ligand. No binding tol-galactose or l-fucose was also observed.

Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.

Note: Here is an example of how to insert references in the text, together with the "biblio" section below: Please see these references for an essential introduction to the CAZy classification system: [1, 2]. CBMs, in particular, have been extensively reviewed [3, 4, 5, 6, 7].

Structural Features

Content in this section should include, in paragraph form, a description of:

  • Fold: Structural fold (beta trefoil, beta sandwich, etc.)
  • Type: Include here Type A, B, or C and properties
  • Features of ligand binding: Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.

Functionalities

Content in this section should include, in paragraph form, a description of:

  • Functional role of CBM: Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
  • Most Common Associated Modules: 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
  • Novel Applications: Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.

Family Firsts

First Identified
Insert archetype here, possibly including very brief synopsis.SaCBM67 from the S. avermitilis α-l-rhamnosidase SaRha78A was the first member of the family to be identified and characterized [1].
First Structural Characterization
Insert archetype here, possibly including very brief synopsis.The first structure in CBM67 is a module involved in BsRhaB from Bacillussp. GL1 [2], but the function of the module has not been demonstrated. The first structure-based characterization of a member of family CBM67 was SaCBM67 [1].

References

  1. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  2. Boraston AB, Bolam DN, Gilbert HJ, and Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(Pt 3):769-81. DOI:10.1042/BJ20040892 | PubMed ID:15214846 [Boraston2004]
  3. Hashimoto H (2006). Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci. 2006;63(24):2954-67. DOI:10.1007/s00018-006-6195-3 | PubMed ID:17131061 [Hashimoto2006]
  4. Shoseyov O, Shani Z, and Levy I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283-95. DOI:10.1128/MMBR.00028-05 | PubMed ID:16760304 [Shoseyov2006]
  5. Guillén D, Sánchez S, and Rodríguez-Sanoja R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241-9. DOI:10.1007/s00253-009-2331-y | PubMed ID:19908036 [Guillen2010]
  6. Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, and Rodríguez-Sanoja R. (2017). Advances in molecular engineering of carbohydrate-binding modules. Proteins. 2017;85(9):1602-1617. DOI:10.1002/prot.25327 | PubMed ID:28547780 [Armenta2017]
  7. Fujimoto Z, Jackson A, Michikawa M, Maehara T, Momma M, Henrissat B, Gilbert HJ, and Kaneko S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem. 2013;288(17):12376-85. DOI:10.1074/jbc.M113.460097 | PubMed ID:23486481 [Fujimoto2013]
  8. Cui Z, Maruyama Y, Mikami B, Hashimoto W, and Murata K. (2007). Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. J Mol Biol. 2007;374(2):384-98. DOI:10.1016/j.jmb.2007.09.003 | PubMed ID:17936784 [Cui2007]

All Medline abstracts: PubMed