CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Carbohydrate Binding Module Family 74"

From CAZypedia
Jump to navigation Jump to search
Line 17: Line 17:
  
 
== Ligand specificities ==
 
== Ligand specificities ==
Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.
 
  
''Note: Here is an example of how to insert references in the text, together with the "biblio" section below:'' Please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>. CBMs, in particular, have been extensively reviewed <cite>Boraston2004 Hashimoto2006 Shoseyov2006 Guillen2010</cite>.
+
The dialysis refolded MaAmyA CBM74 domain was shown to bind to soluble potato starch, boiled granular potato, wheat, and waxy corn starch (type 3 resistant starches) as well as amylose (unspecified source), and amylopectin (unspecified source) by polysaccharide‐binding macroarray. This domain also binds to raw granular starches (type 2 resistant starch) from wheat, waxy corn, and potato as shown by adsorption depletion in which unbound protein is measured following incubation with and centrifugation of starch granules. <cite> Valk2016 </cite>
  
 
== Structural Features ==
 
== Structural Features ==

Revision as of 19:44, 15 August 2019

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


CAZy DB link
http://www.cazy.org/CBM74.html

Ligand specificities

The dialysis refolded MaAmyA CBM74 domain was shown to bind to soluble potato starch, boiled granular potato, wheat, and waxy corn starch (type 3 resistant starches) as well as amylose (unspecified source), and amylopectin (unspecified source) by polysaccharide‐binding macroarray. This domain also binds to raw granular starches (type 2 resistant starch) from wheat, waxy corn, and potato as shown by adsorption depletion in which unbound protein is measured following incubation with and centrifugation of starch granules. [1]

Structural Features

Content in this section should include, in paragraph form, a description of:

  • Fold: Structural fold (beta trefoil, beta sandwich, etc.)
  • Type: Include here Type A, B, or C and properties
  • Features of ligand binding: Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.

Functionalities

Content in this section should include, in paragraph form, a description of:

  • Functional role of CBM: Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
  • Most Common Associated Modules: 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
  • Novel Applications: Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.

Family Firsts

First Identified
CBM74 was first identified as the C-terminal domain of a multi-modular α-amylase, MaAmyA, originating from Microbacterium aurum[1].
First Structural Characterization
No structure has yet been determined for any CBM74 family member.

References

  1. Valk V, Lammerts van Bueren A, van der Kaaij RM, and Dijkhuizen L. (2016). Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes. FEBS J. 2016;283(12):2354-68. DOI:10.1111/febs.13745 | PubMed ID:27101946 [Valk2016]
  2. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 | PubMed ID:18838391 [Cantarel2009]
  3. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  4. Boraston AB, Bolam DN, Gilbert HJ, and Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(Pt 3):769-81. DOI:10.1042/BJ20040892 | PubMed ID:15214846 [Boraston2004]
  5. Hashimoto H (2006). Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci. 2006;63(24):2954-67. DOI:10.1007/s00018-006-6195-3 | PubMed ID:17131061 [Hashimoto2006]
  6. Shoseyov O, Shani Z, and Levy I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283-95. DOI:10.1128/MMBR.00028-05 | PubMed ID:16760304 [Shoseyov2006]
  7. Guillén D, Sánchez S, and Rodríguez-Sanoja R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241-9. DOI:10.1007/s00253-009-2331-y | PubMed ID:19908036 [Guillen2010]

All Medline abstracts: PubMed