CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Glycoside Hydrolase Family 151

From CAZypedia
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH151
Clan None
Mechanism Retaining (inferred)
Active site residues Not known
CAZy DB link
http://www.cazy.org/GH151.html


Substrate specificities

Members of GH151 have α-L-fucosidase activity (EC 3.2.1.51) [1, 2, 3]. Activity has been observed on 4-nitrophenyl-α-L-fucopyranoside (pNP-α-L-Fuc) [2, 3] and on 2-chloro-4-nitrophenyl-α-L-fucopyranoside (CNP-α-L-Fuc) [1]. GH151 α-L-fucosidases are reportedly unable to catalyze hydrolysis of human milk oligosaccharide structures 2'-fucosyllactose (2'FL) and 3-fucosyllactose (3FL) [1, 3], but slight activity has been observed on the blood group H antigen disaccharide Fuc-α-1,2-Gal [1]. No activity was observed on fucosylated xyloglucan [3].

Kinetics and Mechanism

The mechanism of GH151 has not been determined, but based on reports that two members of GH151 can catalyze transglycosylation using pNP-α-L-Fuc as donor substrate [2, 3], a retaining mechanism has been inferred.

Catalytic Residues

The catalytic residues of GH151 are unknown.

Three-dimensional structures

No three-dimensional structures have been solved for GH151.

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, and Mills DA. (2012). Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78(3):795-803. DOI:10.1128/AEM.06762-11 | PubMed ID:22138995 [Sela2012]
  2. Benešová E, Lipovová P, Krejzová J, Kovaľová T, Buchtová P, Spiwok V, and Králová B. (2015). Alpha-L-fucosidase isoenzyme iso2 from Paenibacillus thiaminolyticus. BMC Biotechnol. 2015;15:36. DOI:10.1186/s12896-015-0160-x | PubMed ID:26013545 [Benesova2015]
  3. Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, and Mikkelsen JD. (2016). Novel α-L-Fucosidases from a Soil Metagenome for Production of Fucosylated Human Milk Oligosaccharides. PLoS One. 2016;11(1):e0147438. DOI:10.1371/journal.pone.0147438 | PubMed ID:26800369 [Lezyk2016]

All Medline abstracts: PubMed