CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Glycoside Hydrolase Family 30

From CAZypedia
Jump to navigation Jump to search


Glycoside Hydrolase Family 30
Clan GH-A
Mechanism retaining
Active site residues not known
CAZy DB link
http://www.cazy.org/fam/GH30.html

Substrate specificities

This family contains three known enzyme activities: β-glucosylceramidase, β-1,6-glucanase, and β-xylosidase. This family enzymes currently contains enzymes from only bacteria and eukaryotes. The best-studied enzyme is human β-glucocerebrosidase whose deficiency causes Gauchers disease [1]. This enzyme is responsible for hydrolyzing the β-glucoside from the glycolipid glucosylceramide.

Kinetics and Mechanism

Family GH30 enzymes are retaining enzymes. Although this has never been formally demonstrated experimentally through NMR analysis of the first-formed sugar product, covalent trapping of the enzymatic nucleophile (described below) conclusively demonstrates that these enzymes follow the classic Koshland double-displacement mechanism. The β-glucosylceramidases require an activator protein and negatively charged for optimal activity, [2] although the role of these activators is still not entirely clear. Neither the β-1,6-glucanases [3] nor the β-xylosidases [4] appear to require any activators.

Catalytic Residues

The catalytic nucleophile was first identified in human β-glucocerebrosidase as Glu340 in the sequence FASEA by trapping of the 2-deoxy-2-fluoro-glucosyl-enzyme intermediate and subsequent peptide mapping by LC/MS-MS [5]. The catalytic nucleophile had been previously mistakenly identified as Asp443 using a tritiated bromoconduritol epoxide [6, 7], although subsequent kinetic analyses of site-directed mutants of Asp443 were not consistent with its role as the catalytic nucleophile [8]. The catalytic acid/base has not been experimentally verified through analysis of variant proteins created by mutation of that site, although it is consistent with structural studies (below).

Three-dimensional structures

The three-dimensional structure of human β-glucocerebrosidase was first solved in 2003 [9], and since then a number of structures of this enzyme have been reported (reviewed in [10]). GH30 enzymes are members of the GHA clan fold, consistent with the classic (α/β)8 TIM barrel fold with the two key active site glutamic acids located at the C-terminal ends of β-strands 4 (acid/base) and 7 (nucleophile) [11].

Family Firsts

First catalytic nucleophile identification
Human β-glucocerebrosidase by 2-fluoroglucose labelling [1]
First 3-D structure of a GH30 enzyme
Human β-glucocerebrosidase [2]

References

  1. Grabowski GA (2008). Phenotype, diagnosis, and treatment of Gaucher's disease. Lancet. 2008;372(9645):1263-71. DOI:10.1016/S0140-6736(08)61522-6 | PubMed ID:19094956 [1]
  2. Grabowski GA, Gatt S, and Horowitz M. (1990). Acid beta-glucosidase: enzymology and molecular biology of Gaucher disease. Crit Rev Biochem Mol Biol. 1990;25(6):385-414. DOI:10.3109/10409239009090616 | PubMed ID:2127241 [2]
  3. Oyama S, Yamagata Y, Abe K, and Nakajima T. (2002). Cloning and expression of an endo-1,6-beta-D-glucanase gene (neg1) from Neurospora crassa. Biosci Biotechnol Biochem. 2002;66(6):1378-81. DOI:10.1271/bbb.66.1378 | PubMed ID:12162562 [3]
  4. Brunner F, Wirtz W, Rose JK, Darvill AG, Govers F, Scheel D, and Nürnberger T. (2002). A beta-glucosidase/xylosidase from the phytopathogenic oomycete, Phytophthora infestans. Phytochemistry. 2002;59(7):689-96. DOI:10.1016/s0031-9422(02)00045-6 | PubMed ID:11909624 [4]
  5. Miao S, McCarter JD, Grace ME, Grabowski GA, Aebersold R, and Withers SG. (1994). Identification of Glu340 as the active-site nucleophile in human glucocerebrosidase by use of electrospray tandem mass spectrometry. J Biol Chem. 1994;269(15):10975-8. | Google Books | Open Library PubMed ID:7908905 [5]
  6. Dinur T, Osiecki KM, Legler G, Gatt S, Desnick RJ, and Grabowski GA. (1986). Human acid beta-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site. Proc Natl Acad Sci U S A. 1986;83(6):1660-4. DOI:10.1073/pnas.83.6.1660 | PubMed ID:3456607 [6]
  7. Legler G (1990). Glycoside hydrolases: mechanistic information from studies with reversible and irreversible inhibitors. Adv Carbohydr Chem Biochem. 1990;48:319-84. DOI:10.1016/s0065-2318(08)60034-7 | PubMed ID:2077872 [7]
  8. Grace ME, Newman KM, Scheinker V, Berg-Fussman A, and Grabowski GA. (1994). Analysis of human acid beta-glucosidase by site-directed mutagenesis and heterologous expression. J Biol Chem. 1994;269(3):2283-91. | Google Books | Open Library PubMed ID:8294487 [8]
  9. Dvir H, Harel M, McCarthy AA, Toker L, Silman I, Futerman AH, and Sussman JL. (2003). X-ray structure of human acid-beta-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 2003;4(7):704-9. DOI:10.1038/sj.embor.embor873 | PubMed ID:12792654 [9]
  10. Kacher Y, Brumshtein B, Boldin-Adamsky S, Toker L, Shainskaya A, Silman I, Sussman JL, and Futerman AH. (2008). Acid beta-glucosidase: insights from structural analysis and relevance to Gaucher disease therapy. Biol Chem. 2008;389(11):1361-9. DOI:10.1515/BC.2008.163 | PubMed ID:18783340 [10]
  11. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, and Davies G. (1995). Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995;92(15):7090-4. DOI:10.1073/pnas.92.15.7090 | PubMed ID:7624375 [11]

All Medline abstracts: PubMed