CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Glycoside Hydrolase Family 37"

From CAZypedia
Jump to navigation Jump to search
Line 37: Line 37:
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
The catalytic residues have not been demonstrated unequivocally, but structural determination of the trehalase from ''Escherichia coli'' in complex with inhibitors in the active site implicate an aspartate residue (Asp312 in ''E. coli'') as the catalytic [[general acid]] and a glutamate residue (Glu496 in ''E. coli'') as the catalytic [[general base]] <cite>Gibson2007</cite>.
+
The catalytic residues were first predicted through structural determination of ''E. coli'' Tre37A in complex with inhibitors 1-thiatrehazolin (PDB ID [https://www.rcsb.org/structure/2JG0 2JG0]) and validoxylamine A (PDB ID [https://www.rcsb.org/structure/2JF4 2JF4]) <cite>Gibson2007</cite>. These structures implicate an aspartate residue (Asp312 in ''E. coli'') as the catalytic [[general acid/base|general acid]], and a glutamate residue (Glu496 in ''E. coli'') as the catalytic [[general acid/base|general base]]. A crystal structure of ''S. cerevisiae'' Nth1 with bound trehalose identified an aspartate residue (Asp478 in ''S. cerevisiae'') as the catalytic [[general acid/base|general acid]], and a glutamate residue (Glu674 in ''S. cerevisiae'') as the [[general acid/base|general base]]. Superimposition of these structures indicates that the proposed catalytic residues align in both the ''E. coli'' Tre37A inhibitor bound and ''S. cerevisiae'' Nth1 trehalose bound structures.  
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
The only structural representative from GH37 to date is the trehalase from ''Escherichia coli'', which was solved using X-ray crystallography <cite>Gibson2007</cite>. The structure revealed a (α/α)<sub>6</sub> barrel fold, similar to other α-toroidal glycosidases such as those in families [[GH94]], [[GH15]] and [[GH65]]. GH37 falls into [[clans|clan]] GH-G. Structures have been solved with the inhibitors validoxylamine A, 1-thiatrehazolin and casuarine analogues <cite>Gibson2007,Cardona2009,Cardona2010</cite>.
+
The first three-dimensional structure of a GH37 trehalase was obtained from ''E. coli'' Tre37A in complex with the inhibitors 1-thiatrehazolin (PDB ID [https://www.rcsb.org/structure/2JG0 2JG0]) and validoxylamine A (PDB ID [https://www.rcsb.org/structure/2JF4 2JF4]) by x-ray crystallography <cite>Gibson2007</cite>. The structure revealed a monomeric enzyme consisting of an (α/α)6 barrel fold, similar to other α-toroidal glycosidases. The structure revealed extensive hydrogen bonding and a distinct lack of hydrophobic stacking within the +1 subsite. The bound structure also revealed that the +1 and -1 subsites were buried within the enzyme structure and significant conformation changes would be required for substrate recognition.
 +
 
 +
The first eukaryotic GH37 structure was determined from an ''S. cerevisiae'' Nth1:Bmh1 complex, and provided the first structure in the presence of trehalose (PDB ID [https://www.rcsb.org/structure/5M4A 5M4A]) <cite>Alblova2017</cite>. The catalytic domain consists of an (α/α)6 barrel formed by the interaction of one Bmh1 C-terminus with Nth1. Similar to the ''E. coli'' Tre37A structure, the substrate was found in a deep pocket. A flexible “lid” loop structure was observed to undergo significant conformational changes and complete the active site of Nth1. A similar, but shorter, structure was revealed in ''E. coli'' Tre37A once the solved structures were superimposed <cite>Alblova2017</cite>.  
 +
 
 +
GH37 enzymes belong to the [[clans|clan]] GH-G.  
  
 
== Family Firsts ==
 
== Family Firsts ==
 
;First sterochemistry determination: The inversion of stereochemistry for a trehalase from the flesh fly ''Sarcophaga barbata'' was first demonstrated by Clifford in 1980 <cite>Clifford1980</cite>.
 
;First sterochemistry determination: The inversion of stereochemistry for a trehalase from the flesh fly ''Sarcophaga barbata'' was first demonstrated by Clifford in 1980 <cite>Clifford1980</cite>.
;First [[general acid]] identification: Predicted from structure determination <cite>Gibson2007</cite>, but not shown unequivocally.  
+
;First [[general acid]] identification: First predicted in E. coli Tre37A from structure determination with inhibitors <cite>Gibson2007</cite>, observed in structural determination of S. cerevisiae complexed with trehalose <cite>Alblova2017</cite>.
;First [[general base]] identification: Predicted from structure determination <cite>Gibson2007</cite>, but not shown unequivocally.
+
;First [[general base]] identification: First predicted in E. coli Tre37A from structure determination with inhibitors <cite>Gibson2007</cite>, observed in structural determination of S. cerevisiae complexed with trehalose <cite>Alblova2017</cite>.
 
;First 3-D structure: The GH37 trehalase from ''Escherichia coli'' was solved by X-ray crystallography <cite>Gibson2007</cite>.
 
;First 3-D structure: The GH37 trehalase from ''Escherichia coli'' was solved by X-ray crystallography <cite>Gibson2007</cite>.
  
Line 55: Line 59:
 
#Alblova2017 pmid=29087344
 
#Alblova2017 pmid=29087344
 
#Alblova2019 pmid=30628830
 
#Alblova2019 pmid=30628830
 
#Cardona2009 pmid=19123216
 
#Cardona2010 pmid=20461849
 
  
  

Revision as of 12:34, 9 September 2021

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH37
Clan GH-G
Mechanism Inverting
Active site residues Inferred
CAZy DB link
http://www.cazy.org/GH37.html


Substrate specificities

To date, GH37 glycoside hydrolases have been shown to hydrolyze the α-1,1 bound trehalose (α-D-glucopyranosyl-(1→1)-α-D-glucopyranoside) into two molecules of D-glucose (EC 3.2.1.28). GH37 enzymes are further classified by their optimal pH; neutral or acidic, and also by their cellular localization; soluble or membrane bound [1].

Kinetics and Mechanism

GH37 trehalases follow an inverting mechanism. This was first demonstrated through incubation of GH37 trehalases obtained from S. barbata, the flesh fly, with 18O-labelled water and observing its incorporation primarily into the beta-epimer [2]. This was further supported by the solved structure of E. coli Tre37A which demonstrated that the proposed catalytic residues were in a position consistent with an inverting mechanism [3].

Several fungal neutral trehalases; S. cerevisiae, A. nidulans, N. crassa, and C. albicans, show evidence of activation by calcium ion binding and cAMP-dependent phosphorylation [1, 4, 5].

Catalytic Residues

The catalytic residues were first predicted through structural determination of E. coli Tre37A in complex with inhibitors 1-thiatrehazolin (PDB ID 2JG0) and validoxylamine A (PDB ID 2JF4) [3]. These structures implicate an aspartate residue (Asp312 in E. coli) as the catalytic general acid, and a glutamate residue (Glu496 in E. coli) as the catalytic general base. A crystal structure of S. cerevisiae Nth1 with bound trehalose identified an aspartate residue (Asp478 in S. cerevisiae) as the catalytic general acid, and a glutamate residue (Glu674 in S. cerevisiae) as the general base. Superimposition of these structures indicates that the proposed catalytic residues align in both the E. coli Tre37A inhibitor bound and S. cerevisiae Nth1 trehalose bound structures.

Three-dimensional structures

The first three-dimensional structure of a GH37 trehalase was obtained from E. coli Tre37A in complex with the inhibitors 1-thiatrehazolin (PDB ID 2JG0) and validoxylamine A (PDB ID 2JF4) by x-ray crystallography [3]. The structure revealed a monomeric enzyme consisting of an (α/α)6 barrel fold, similar to other α-toroidal glycosidases. The structure revealed extensive hydrogen bonding and a distinct lack of hydrophobic stacking within the +1 subsite. The bound structure also revealed that the +1 and -1 subsites were buried within the enzyme structure and significant conformation changes would be required for substrate recognition.

The first eukaryotic GH37 structure was determined from an S. cerevisiae Nth1:Bmh1 complex, and provided the first structure in the presence of trehalose (PDB ID 5M4A) [4]. The catalytic domain consists of an (α/α)6 barrel formed by the interaction of one Bmh1 C-terminus with Nth1. Similar to the E. coli Tre37A structure, the substrate was found in a deep pocket. A flexible “lid” loop structure was observed to undergo significant conformational changes and complete the active site of Nth1. A similar, but shorter, structure was revealed in E. coli Tre37A once the solved structures were superimposed [4].

GH37 enzymes belong to the clan GH-G.

Family Firsts

First sterochemistry determination
The inversion of stereochemistry for a trehalase from the flesh fly Sarcophaga barbata was first demonstrated by Clifford in 1980 [2].
First general acid identification
First predicted in E. coli Tre37A from structure determination with inhibitors [3], observed in structural determination of S. cerevisiae complexed with trehalose [4].
First general base identification
First predicted in E. coli Tre37A from structure determination with inhibitors [3], observed in structural determination of S. cerevisiae complexed with trehalose [4].
First 3-D structure
The GH37 trehalase from Escherichia coli was solved by X-ray crystallography [3].

References

  1. d'Enfert C, Bonini BM, Zapella PD, Fontaine T, da Silva AM, and Terenzi HF. (1999). Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol. 1999;32(3):471-83. DOI:10.1046/j.1365-2958.1999.01327.x | PubMed ID:10320571 [DEnfert1999]
  2. Clifford KH (1980). Stereochemistry of the hydrolysis of trehalose by the enzyme trehalase prepared from the flesh fly Sarcophaga barbata. Eur J Biochem. 1980;106(1):337-40. DOI:10.1111/j.1432-1033.1980.tb06028.x | PubMed ID:7341233 [Clifford1980]
  3. Gibson RP, Gloster TM, Roberts S, Warren RA, Storch de Gracia I, García A, Chiara JL, and Davies GJ. (2007). Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem Int Ed Engl. 2007;46(22):4115-9. DOI:10.1002/anie.200604825 | PubMed ID:17455176 [Gibson2007]
  4. Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V, and Obsil T. (2017). Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc Natl Acad Sci U S A. 2017;114(46):E9811-E9820. DOI:10.1073/pnas.1714491114 | PubMed ID:29087344 [Alblova2017]
  5. Alblova M, Smidova A, Kalabova D, Lentini Santo D, Obsil T, and Obsilova V. (2019). Allosteric activation of yeast enzyme neutral trehalase by calcium and 14-3-3 protein. Physiol Res. 2019;68(2):147-160. DOI:10.33549/physiolres.933950 | PubMed ID:30628830 [Alblova2019]

All Medline abstracts: PubMed