CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Glycoside Hydrolase Family 68"

From CAZypedia
Jump to navigation Jump to search
Line 58: Line 58:
 
#8 pmid=9895294
 
#8 pmid=9895294
 
#9 pmid=15869470
 
#9 pmid=15869470
#X4 isbn=978-0-240-52118-3
 
#MikesClassic Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. [http://dx.doi.org/10.1021/cr00105a006 DOI: 10.1021/cr00105a006]
 
 
 
</biblio>
 
</biblio>
  
  
 
[[Category:Glycoside Hydrolase Families|GH068]]
 
[[Category:Glycoside Hydrolase Families|GH068]]

Revision as of 09:28, 16 February 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH68
Clan GH-J
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/fam/GH68.html


Substrate specificities

Glycoside hydrolase family GH68 contains enzymes that hydrolyze fructose containing polysaccharides such as levansucrase (sucrose:2,6-β-D-fructan 6-β-D-fructosyltransferase; EC 2.4.1.10); β-fructofuranosidase (EC 3.2.1.26); and inulosucrase (EC 2.4.1.9)

Kinetics and Mechanism

Family GH68 enzymes are retaining enzymes, as first shown by Koshland and Stein by performing the reaction in 18O-labeled water and determining the 18O content of the products [1]. The levansucrases from Bacillus subtilis, Gluconacetobacter diazotrophicus, and Streptococcus salivarius follows a ping-pong mechanism [2, 3, 4, 5]. At low sucrose concentrations levansucrase functions as a hydrolase with water as acceptor, whereas at higher substrate concentrations it adds fructosyl units to a growing levan chain [2].

Catalytic Residues

Retaining glycosidases catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate. The two invariant residues, responsible for the catalytic reaction in family GH68 enzymes, have first been identified experimentally in bacterial levansucrases as an aspartate located close to the N-terminus acting as the catalytic nucleophile and a glutamate acting as the general acid/base [6, 7]. In addition, a conserved aspartate residue in the "Arg-Asp-Pro (RDP) motif" stabilize the transition state [5, 7, 8].

Three-dimensional structures

Currently, only two different three dimensional structures of family GH68 enzymes have been solved so far. The first crystal structure was reported for the bacterial levansucrase (SacB) from Bacillus subtilis subsp. subtilis str. 168 [6]. The second one corresponds to levansucrase (LdsA) from Gluconacetobacter diazotrophicus SRT4 [9].


Family Firsts

First stereochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [].

References

  1. KOSHLAND DE Jr and STEIN SS. (1954). Correlation of bond breaking with enzyme specificity; cleavage point of invertase. J Biol Chem. 1954;208(1):139-48. | Google Books | Open Library PubMed ID:13174523 [1]
  2. Chambert R, Treboul G, and Dedonder R. (1974). Kinetic studies of levansucrase of Bacillus subtilis. Eur J Biochem. 1974;41(2):285-300. DOI:10.1111/j.1432-1033.1974.tb03269.x | PubMed ID:4206083 [2]
  3. Chambert R and Gonzy-Tréboul G. (1976). Levansucrase of Bacillus subtilis: kinetic and thermodynamic aspects of transfructosylation processes. Eur J Biochem. 1976;62(1):55-64. DOI:10.1111/j.1432-1033.1976.tb10097.x | PubMed ID:814002 [3]
  4. Hernandez L, Arrieta J, Menendez C, Vazquez R, Coego A, Suarez V, Selman G, Petit-Glatron MF, and Chambert R. (1995). Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J. 1995;309 ( Pt 1)(Pt 1):113-8. DOI:10.1042/bj3090113 | PubMed ID:7619044 [4]
  5. Song DD and Jacques NA. (1999). Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem J. 1999;341 ( Pt 2)(Pt 2):285-91. | Google Books | Open Library PubMed ID:10393084 [5]
  6. Meng G and Fütterer K. (2003). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol. 2003;10(11):935-41. DOI:10.1038/nsb974 | PubMed ID:14517548 [6]
  7. Yanase H, Maeda M, Hagiwara E, Yagi H, Taniguchi K, and Okamoto K. (2002). Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J Biochem. 2002;132(4):565-72. DOI:10.1093/oxfordjournals.jbchem.a003258 | PubMed ID:12359071 [7]
  8. Batista FR, Hernández L, Fernández JR, Arrieta J, Menéndez C, Gómez R, Támbara Y, and Pons T. (1999). Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity. Biochem J. 1999;337 ( Pt 3)(Pt 3):503-6. | Google Books | Open Library PubMed ID:9895294 [8]
  9. Martínez-Fleites C, Ortíz-Lombardía M, Pons T, Tarbouriech N, Taylor EJ, Arrieta JG, Hernández L, and Davies GJ. (2005). Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J. 2005;390(Pt 1):19-27. DOI:10.1042/BJ20050324 | PubMed ID:15869470 [9]

All Medline abstracts: PubMed