CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Polysaccharide Lyase Family 8"

From CAZypedia
Jump to navigation Jump to search
(replaced deleted </biblio> tag)
Line 29: Line 29:
  
  
== Known Activities ==
+
== Activities and Substrate Specificities ==
Depending on the subfamily, PL8s display a broad range of enzymatic activities including: hyaluronate lyase (EC 4.2.2.1); chondroitin AC lyase (EC 4.2.2.5); xanthan lyase (EC 4.2.2.12); and chondroitin ABC lyase (EC 4.2.2.20) actions.
+
PL8s are active on a  variety of uronic acid-containing polysaccharides including: '''hyaluronan''' (EC 4.2.2.1) [4)-&beta;-D-Glucuronate-1,3-&beta; -D-N-Acetyl-Glucosamine(1]<sub>n</sub>, '''chondroitin AC''' (EC 4.2.2.5) [4)-&beta;-D-Glucuronate-1,3-&beta;-D-N-Acetyl-Galactosamine&Delta;4,6S(1]<sub>n</sub>, '''xanthan''' (EC 4.2.2.12) [4)-&beta;-D-Glucuronate-1,4-&beta;-D-Glucuronate (1]<sub>n</sub>, and '''chondroitin ABC''' (EC 4.2.2.20) [chondroitin AC and chondroitin B (aka. dermatan sulfate: 4)-&beta;-L-Iduronate2S-1,3-&beta;-D-N-Acetyl-Galactosamine4S(1]<sub>n</sub>.
 
 
== Substrate specificities ==
 
PL8s are active on a  variety of uronic acid-containing polysaccharides including '''hyaluronan''' [4)-&beta;-D-Glucuronate-1,3-&beta; -D-N-Acetyl-Glucosamine(1]<sub>n</sub>, '''chondroitin AC''' [4)-&beta;-D-Glucuronate-1,3-&beta;-D-N-Acetyl-Galactosamine&Delta;4,6S(1]<sub>n</sub>, '''xanthan''' [4)-&beta;-D-Glucuronate-1,4-&beta;-D-Glucuronate (1]<sub>n</sub>, and '''chondroitin ABC''' [chondroitin AC and chondroitin B (aka. dermatan sulfate: 4)-&beta;-L-Iduronate2S-1,3-&beta;-D-N-Acetyl-Galactosamine4S(1]<sub>n</sub>.
 
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
Line 43: Line 40:
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
 
Structure by Activity:
 
Structure by Activity:
Hyaluronidase – 'S. pneumoniae' R6 <cite>Li2000</cite>([{{PDBlink}}1OJM PDB 1OJM]).
+
;Hyaluronan lyase – 'S. pneumoniae' R6 <cite>Li2000</cite>([{{PDBlink}}1ojm PDB 1OJM]).
Chondroitin AC lyase – 'Bacteroides stercoris' HJ-15 <cite>Fethiere1999</cite>([{{PDBlink}}1CB8 PDB 1CB8]).
+
;Chondroitin AC lyase – 'Bacteroides stercoris' HJ-15 <cite>Fethiere1999</cite>([{{PDBlink}}1cb8 PDB 1CB8]).
Xanthanase – 'Bacillus' sp GL1 <cite>Hashimoto2003</cite>([{{PDBlink}}1J0M PDB 1J0M]).
+
;Xanthan lyase – 'Bacillus' sp GL1 <cite>Hashimoto2003</cite>([{{PDBlink}}1j0m PDB 1J0M]).
Chondroitin ABC lyase – 'Proteus vulgaris' <cite>Huang2003</cite>([{{PDBlink}}1HN0 PDB 1HN0]).   
+
;Chondroitin ABC lyase – 'Proteus vulgaris' <cite>Huang2003</cite>([{{PDBlink}}1hn0 PDB 1HN0]).   
  
 
== Family Firsts ==
 
== Family Firsts ==
Line 52: Line 49:
 
;First catalytic nucleophile identification: Content is to be added here.
 
;First catalytic nucleophile identification: Content is to be added here.
 
;First general acid/base residue identification: Content is to be added here.
 
;First general acid/base residue identification: Content is to be added here.
;First 3-D structure: Chondroitin AC lyase – “Bacteroides stercoris” HJ-15 <cite>Fethiere1999</cite>([{{PDBlink}}1CB8 PDB 1CB8]).
+
;First 3-D structure: Chondroitin AC lyase – “Bacteroides stercoris” HJ-15 <cite>Fethiere1999</cite>([{{PDBlink}}1cb8 PDB 1CB8]).
  
== First Structures by Activity ==
 
;Hyaluronan lyase: ''Streptococcus pneumoniae'' R6 <cite>Li2000</cite>([{{PDBlink}}1OJM PDB 1OJM]).
 
;Chondroitin AC lyase: ''Bacteroides stercoris'' HJ-15 <cite>Fethiere1999</cite>([{{PDBlink}}1CB8 PDB 1CB8]).
 
;Xanthan lyase: ''Bacillus'' sp GL1 <cite>Hashimoto2003</cite>([{{PDBlink}}1J0M PDB 1J0M]).
 
;Chondroitin ABC lyase: ''Proteus vulgaris'' <cite>Huang2003</cite>([{{PDBlink}}1HN0 PDB 1HN0]).
 
  
 
== References ==
 
== References ==

Revision as of 09:33, 7 November 2013

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Polysaccharide Lyase Family PL8
3D Structure (α/α)6 barrel + anti-parallel β-sheet
Mechanism β-elimination
Active site residues Pneumonococcal hyaluronidase: Asn249, His399, Tyr408.
CAZy DB link
http://www.cazy.org/PL8.html


Activities and Substrate Specificities

PL8s are active on a variety of uronic acid-containing polysaccharides including: hyaluronan (EC 4.2.2.1) [4)-β-D-Glucuronate-1,3-β -D-N-Acetyl-Glucosamine(1]n, chondroitin AC (EC 4.2.2.5) [4)-β-D-Glucuronate-1,3-β-D-N-Acetyl-GalactosamineΔ4,6S(1]n, xanthan (EC 4.2.2.12) [4)-β-D-Glucuronate-1,4-β-D-Glucuronate (1]n, and chondroitin ABC (EC 4.2.2.20) [chondroitin AC and chondroitin B (aka. dermatan sulfate: 4)-β-L-Iduronate2S-1,3-β-D-N-Acetyl-Galactosamine4S(1]n.

Kinetics and Mechanism

One of the major unresolved controversies around the PL8 catalytic mechanism is the candidate of the general base. Jedrzejas et al. proposed that in the Streptococcus pneumoniae hyaluronidase, His399 acts as the general base, Asn349 acts to neutralize the C5-carboxylate group, and Tyr408 is the proton donor [1, 2]. However, for two other PL8 family members: the Bacillus sp. GL1 xanthanase and Streptomyces coelicolor A3 hyaluronidase, it was suggested that an equivalent tyrosine residue served as the general acid and general base throughout the reaction [3, 4]. Combined quantum mechanical and molecular mechanical (QM/MM) simulations suggests the latter hypothesis is favored, with H399 participating in the neutralization of the C5-carboxylate group [5]. Molecular dynamic simulations of the pneumococcal hyaluronidase with hyaluronan fragments suggest that opening/closing and twisting domain motions of the (α/α)6 barrel with respect to the anti-parallel β-sheet domains underly processive substrate translocation [6].

Catalytic Residues

In S. pneumoniae, mutagenesis and kinetic analysis of the HysA mutant suggested three residues were involved in catalysis Asn249, His399, Tyr408 and that two residues, Arg243 and Asn580 were responsible for substrate binding and translocation [1]. However, there is some question over what the identity is over the general base (please see Elmabrouk or Zheng et al. for discussions [4, 5]. An Asp for Asn mutation in Proteus vulgaris was suggested to provide the mechanism for enzymatic distinguishing between the two epimers [7].

Three-dimensional structures

Structure by Activity:

Hyaluronan lyase – 'S. pneumoniae' R6 [2](PDB 1OJM).
Chondroitin AC lyase – 'Bacteroides stercoris' HJ-15 [8](PDB 1CB8).
Xanthan lyase – 'Bacillus' sp GL1 [9](PDB 1J0M).
Chondroitin ABC lyase – 'Proteus vulgaris' [7](PDB 1HN0).

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Chondroitin AC lyase – “Bacteroides stercoris” HJ-15 [8](PDB 1CB8).


References

  1. Kelly SJ, Taylor KB, Li S, and Jedrzejas MJ. (2001). Kinetic properties of Streptococcus pneumoniae hyaluronate lyase. Glycobiology. 2001;11(4):297-304. DOI:10.1093/glycob/11.4.297 | PubMed ID:11358878 [Kelly2001]
  2. Li S, Kelly SJ, Lamani E, Ferraroni M, and Jedrzejas MJ. (2000). Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO J. 2000;19(6):1228-40. DOI:10.1093/emboj/19.6.1228 | PubMed ID:10716923 [Li2000]
  3. Maruyama Y, Hashimoto W, Mikami B, and Murata K. (2005). Crystal structure of Bacillus sp. GL1 xanthan lyase complexed with a substrate: insights into the enzyme reaction mechanism. J Mol Biol. 2005;350(5):974-86. DOI:10.1016/j.jmb.2005.05.055 | PubMed ID:15979090 [Maruyama2005]
  4. Elmabrouk ZH, Vincent F, Zhang M, Smith NL, Turkenburg JP, Charnock SJ, Black GW, and Taylor EJ. (2011). Crystal structures of a family 8 polysaccharide lyase reveal open and highly occluded substrate-binding cleft conformations. Proteins. 2011;79(3):965-74. DOI:10.1002/prot.22938 | PubMed ID:21287626 [Elmabrouk2011]
  5. Zheng M and Xu D. (2013). Catalytic mechanism of hyaluronate lyase from Streptococcus pneumonia [corrected] : quantum mechanical/molecular mechanical and density functional theory studies. J Phys Chem B. 2013;117(35):10161-72. DOI:10.1021/jp406206s | PubMed ID:23944739 [Zheng2013]
  6. Joshi HV, Jedrzejas MJ, and de Groot BL. (2009). Domain motions of hyaluronan lyase underlying processive hyaluronan translocation. Proteins. 2009;76(1):30-46. DOI:10.1002/prot.22316 | PubMed ID:19089975 [Joshi2009]
  7. Huang W, Lunin VV, Li Y, Suzuki S, Sugiura N, Miyazono H, and Cygler M. (2003). Crystal structure of Proteus vulgaris chondroitin sulfate ABC lyase I at 1.9A resolution. J Mol Biol. 2003;328(3):623-34. DOI:10.1016/s0022-2836(03)00345-0 | PubMed ID:12706721 [Huang2003]
  8. Féthière J, Eggimann B, and Cygler M. (1999). Crystal structure of chondroitin AC lyase, a representative of a family of glycosaminoglycan degrading enzymes. J Mol Biol. 1999;288(4):635-47. DOI:10.1006/jmbi.1999.2698 | PubMed ID:10329169 [Fethiere1999]
  9. Ahlgren JA (1991). Purification and characterization of a pyruvated-mannose-specific xanthan lyase from heat-stable, salt-tolerant bacteria. Appl Environ Microbiol. 1991;57(9):2523-8. DOI:10.1128/aem.57.9.2523-2528.1991 | PubMed ID:16348550 [Hashimoto2003]
  10. RAPPORT MM, LINKER A, and MEYER K. (1951). The hydrolysis of hyaluronic acid by pneumococcal hyaluronidase. J Biol Chem. 1951;192(1):283-91. | Google Books | Open Library PubMed ID:14917676 [Rapport1951]
  11. Sato N, Shimada M, Nakajima H, Oda H, and Kimura S. (1994). Cloning and expression in Escherichia coli of the gene encoding the Proteus vulgaris chondroitin ABC lyase. Appl Microbiol Biotechnol. 1994;41(1):39-46. DOI:10.1007/BF00166079 | PubMed ID:7512814 [Sato1994]
  12. Hashimoto W, Miki H, Tsuchiya N, Nankai H, and Murata K. (1998). Xanthan lyase of Bacillus sp. strain GL1 liberates pyruvylated mannose from xanthan side chains. Appl Environ Microbiol. 1998;64(10):3765-8. DOI:10.1128/AEM.64.10.3765-3768.1998 | PubMed ID:9758797 [Hashimoto1998]

All Medline abstracts: PubMed