CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
(24 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''1 December 2020:''' ''YANCEFP! (<u>Y</u>et <u>A</u>nother <u>N</u>ew <u>C</u>arbohydrate <u>E</u>sterase <u>F</u>amily <u>P</u>age, from our friends at WLU!'') Following on a string of CE pages completed by students at Wilfred Laurier University (see [[CE3]], [[CE4]], [[CE7]] and [[CE9]]), today '''[[User:Bobby Lamont|Bobby Lamont]]''' finalized the '''[[Carbohydrate Esterase Family 2]]''' under the guidance of '''[[User:Joel Weadge|Prof. Joel Weadge]]'''.  '''[[CE2]]''' contains carbohydrate de-''O''-acetylases with diverse regiospecifcity, which use a catalytic dyad to perform hydrolysis.   ''This family has a long and rich history of mechanistic and structural study, dating back to the last millennium, which you can learn much more about [[Carbohydrate Esterase Family 2|on Bobby's detailed page]].''
+
'''25 November 2021''' ''Something to CRO about!:'' In our latest [[Curator Approved]] page in a while, '''[[User:Maria Cleveland|Maria Cleveland]]''' has written an extensive history of the Copper Radical Oxidases (CROs) that constitute '''[[Auxiliary Activity Family 5]]'''.  The archetypal '''[[AA5]]''' CRO is the ''Fusarium graminearum'' galactose oxidase, which was first isolated in the 1950s, provided the first 3-D structure in the 1990s, and has been the subject of numerous mechanistic studies up through the new millennium.  '''[[AA5]]''' also contains the glyoxal oxidases, which were discovered in Wisconsin in the late 1980s and form their own subfamily. More recent work by [[User:Maria Cleveland|Maria]], [[User:Yann Mathieu|Yann Mathieu]], and others has shown that a wider range of substrate specificities exists in this family than previously anticipated, while the catalytic flexibility of wild-type and mutant enzymes has spurred numerous biotech applications. ''Slide on over to the '''[[AA5]]''' page, which includes a <u>deep</u> reference list, to learn more about these interesting enzymes!''
 
----
 
----
 
+
'''23 June 2021''' ''A free CAZypedia webinar:'' Check out the presentation on ''CAZypedia'' by [[Board of Curators|Senior Curator]] [[User:Elizabeth Ficko-Blean|Elizabeth Ficko-Blean]], which was part of a webinar on Recent Advances in Carbohydrate-Active Enzymes organized by [[User:Stefan Janecek|Stefan Janecek]].  [[User:Stefan Janecek|Stefan]] also gave a talk on alpha-amylase bioinformatics, and Nicolas Terrapon gave an overview of the [http://www.cazy.org/ CAZy database] in a presentation entitled "Carbohydrate-Active EnZymes Annotation in the High-Throughput Era".  ''More information on the webinar can be found [https://molecules-12.sciforum.net/ here], and you can [https://youtu.be/JyV-zkr8Jw4 watch all three lectures for free on YouTube].''
'''29 September 2020:''' ''Back to the future with beta-1,3-glucanases:'' The '''[[Glycoside Hydrolase Family 128]]''' page was promoted to [[Curator Approved]] status by '''[[User:Mario Murakami|Mario Murakami]]''' today.  '''[[GH128]]''' was originally created following the discovery of this family by '''[[User:Yuichi Sakamoto|Yuichi Sakamoto]]''' and colleagues, who characterized the archetypal beta-1,3-glucanase from the  shiitake mushroomThis year, a team led by '''[[User:Mario Murakami|Mario Murakami]]''', including first-author '''[[User:Camila Santos|Camila Santos]]''', presented a sweeping first mechanistic and structural study of '''[[GH128]]'''.  ''We're grateful to '''[[User:Camila Santos|Camila]]''' and '''[[User:Mario Murakami|Mario]]''' for elaborating upon '''[[User:Yuichi Sakamoto|Yuichi's]]''' original CAZypedia page, which you can read [[Glycoside Hydrolase Family 128|here]]. You can also compare '''[[GH128]]''' with other distinct beta-1,3-glucanase families covered in CAZypedia, e.g. [[GH17]], [[GH81]], [[GH148]], and [[GH158]].''
 
 
 
 
----
 
----
'''22 September 2020:''' ''Like PLs, but different:'' We are happy to announce the completion of a new [[Lexicon]] page on [[Polysaccharide epimerases]] today.  '''[[User:Margrethe Gaardlos|Margrethe Gaardlos]]''' spearheaded the composition of this new page, with input from co-[[author]] '''[[User:Anne Tondervik|Anne Tøndervik]]''' and [[Responsible Curator]] '''[[User:Finn Aachmann|Finn Lillelund Aachmann]]'''.  Although they are not categorized into families in the CAZy system, '''[[Polysaccharide epimerases]]''' bear a lot of structural and mechanistic similarity to '''[[Polysaccharide Lyases]]''': Instead of catalyzing an elimination reaction to break poly-uronic acid chains, '''[[Polysaccharide epimerases]]''' simply use the first part of the [[PL]] mechanism to remove and re-add the C-5 proton. The resulting change in the configuration of the C-6 carboxylate has major impacts on polysaccharide structure and properties. ''The Norwegian team has done a tremendous job in capturing the broad history of these enzymes, including their diverse substrate specificities and structures (and over 130 references!), which you can read all about [[Polysaccharide epimerases|here.]]''  (We also thank [[User:Mirjam Czjzek|Mirjam Czjzek]] for championing the inclusion of the "PEs" in ''CAZYpedia''.)
+
'''31 May 2021''' ''Celebrating CAZy:'' The [[B.A. Stone Award for Excellence in Plant Polysaccharide Biochemistry]] was awarded to [http://www.cazy.org/ CAZy] founder [[User:Bernard Henrissat|Bernard Henrissat]] todayCAZy, ''CAZypedia'', and [[Bruce Stone|Prof. Bruce Stone]] have a [[CAZypedia:History|long, intertwined history]], and today we celebrate [[User:Bernard Henrissat|Bernie's]] insight to create a [https://doi.org/10.1042/BIO03004026 sequence-based classification of the Carbohydrate-Active EnZymes], [https://doi.org/10.1016/0378-1119(89)90339-9 starting with the cellulases].
 
 
----
 
'''6 August 2020:''' ''A beta-1,3-glucanase family with a deep history:'' '''[[User:Julie Grondin|Julie Grondin's]]''' '''[[Glycoside Hydrolase Family 81]]''' page was [[Curator Approved]] by '''[[User:Al Boraston|Al Boraston]]''' today.  '''[[GH81]]''' has a long history of discovery and mechanistic study, including by original CAZypedian and [https://www.grc.org/carbohydrate-active-enzymes-for-glycan-conversions-conference/default.aspx Cellulase/CAZyme GRC co-founder] '''[[User:David Wilson|David Wilson]]''' and co-workersBy capturing a phenomenal number of oligosaccharide complexes, '''[[User:Al Boraston|Al's]]''' group has recently provided detailed molecular description of how enzymes in this family specifically recognize the helical structure adopted by beta-1,3-glucans. ''Be sure to check out the [[Glycoside Hydrolase Family 81|GH81 page]] to get the full history of the contributions of a number of groups world-wide to our knowledge of this family.''
 
----
 
'''23 July 2020:''' ''Another CE family page from our friends at WLU!'' The '''[[Carbohydrate Esterase Family 7]]''' page was finalized and promoted to [[Curator Approved]] status today. '''[[User:Joel Weadge|Joel Weadge]]''' and '''[[User:Joel Weadge|Michael Suits]]''' have been leading the completion of a bunch of CE pages with the help of keen students from Wilfred Laurier University (see [[CE3]], [[CE4]], and [[CE9]]).  This time, '''[[User:Emily Rodriguez|Emily Rodriguez]]''' produced the '''[[CE7]]''' page, which encompasses acetyl xylan esterases and cephalosporin-C deacetylases.  ''Learn more about the specificity, mechanism, and three-dimensional structure of CE7 enzymes [[Carbohydrate Esterase Family 7|here]].''
 
 
 
----
 
'''19 June 2020:''' ''Three additional alginate lyase families!'' The number of PL family pages in ''CAZypedia'' continues to grow with the promotion of the '''[[Polysaccharide Lyase Family 6]]''', '''[[Polysaccharide Lyase Family 15]]''', and '''[[Polysaccharide Lyase Family 17]]''' pages to [[Curator Approved]] status today.  We thank '''[[User:Emil Stender|Emil G.P. Stender]]''' for his hard work in tackling this trifecta of bacterial alginate lyase families (including some heparin/heparan sulfate lyases from the human gut microbiota in '''[[PL15]]'''), which were vetted [[Responsible Curator]] '''[[User:Birte Svensson|Birte Svensson]]'''.  ''Dig into the details of these families on the '''[[PL6]]''', '''[[PL15]]''', and '''[[PL17]]''' pages, in comparison with the recently completed '''[[PL7]]''' page (see previous news item, below).''
 
----
 
'''17 June 2020:''' ''PLs from the sea.'' The '''[[Polysaccharide Lyase Family 7]]''' page, which was written by '''[[User:Nadine Gerlach|Nadine Gerlach]]''', was promoted to completed by [[Curator Approved]] status today by '''[[User:Jan-Hendrik Hehemann|Jan-Hendrik Hehemann]]'''.  The founding member of '''[[PL7]]''', an alginate lyase, was characterized way back in 1993 by a team notably including CAZypedian [[User:Gurvan Michel|Gurvan Michel]]. Alginate is heteropolysaccharide from brown algae and mucoid bacteria, consisting of beta-{{Smallcaps|d}}-mannuronate (M) and alpha-{{Smallcaps|l}}-guluronate (G) residues in varying ratios and intra-chain distributions, depending on the source. As a result, '''[[PL7]]''' members exhibit mannuronate, guluronate, or mixed link specificity.  ''Read more about the deep history of enzymolgoy and structural biology of PL7 [[Polysaccharide Lyase Family 7|here]], including seminal work by '''[[User:Jan-Hendrik Hehemann|Jan-Hendrik]]''' showing the horizontal gene transfer of these enzymes into the human gut microbiota and other marine bacteria.''
 
----
 
'''16 June 2020:''' ''From rotting plants to vegetable digestion in the gut.'' The '''[[Polysaccharide Lyase Family 9]]''' page was completed by '''[[User:Ana Luis|Ana Luis]]''' and upgraded to [[Curator Approved]] status today by '''[[User:Wade Abbott|Wade Abbott]]'''.  '''[[PL9]]'''  was originally identified and characterized as part of the pectin-degrading machinery from the plant pathogenic bacterium [https://en.wikipedia.org/wiki/Dickeya_dadantii ''Dickeya dadantii''] (''Erwinia chrysanthemi''), including seminal structural work by [[User:Richard Pickersgill|Richard Pickersgill]] and colleagues.  More recently '''[[User:Ana Luis|Ana]]''' and '''[[User:Wade Abbott|Wade]]''', as part of a big team involving other CAZypedians [[User:Jonathon Briggs|Jonathon Briggs]], [[User:Didier Ndeh|Didier Ndeh]], [[User:Alan Cartmell|Alan Cartmell]], [[User:Bernard Henrissat|Bernard Henrissat]], and [[User:Harry Gilbert|Harry Gilbert]], shed new light on the role of '''[[PL9]]''' members in the human gut microbiota. ''Take some time to learn more about the long and rich history of '''[[Polysaccharide Lyase Family 9]]!'''''
 
 
----
 
----

Revision as of 08:39, 30 November 2021

25 November 2021 Something to CRO about!: In our latest Curator Approved page in a while, Maria Cleveland has written an extensive history of the Copper Radical Oxidases (CROs) that constitute Auxiliary Activity Family 5. The archetypal AA5 CRO is the Fusarium graminearum galactose oxidase, which was first isolated in the 1950s, provided the first 3-D structure in the 1990s, and has been the subject of numerous mechanistic studies up through the new millennium. AA5 also contains the glyoxal oxidases, which were discovered in Wisconsin in the late 1980s and form their own subfamily. More recent work by Maria, Yann Mathieu, and others has shown that a wider range of substrate specificities exists in this family than previously anticipated, while the catalytic flexibility of wild-type and mutant enzymes has spurred numerous biotech applications. Slide on over to the AA5 page, which includes a deep reference list, to learn more about these interesting enzymes!


23 June 2021 A free CAZypedia webinar: Check out the presentation on CAZypedia by Senior Curator Elizabeth Ficko-Blean, which was part of a webinar on Recent Advances in Carbohydrate-Active Enzymes organized by Stefan Janecek. Stefan also gave a talk on alpha-amylase bioinformatics, and Nicolas Terrapon gave an overview of the CAZy database in a presentation entitled "Carbohydrate-Active EnZymes Annotation in the High-Throughput Era". More information on the webinar can be found here, and you can watch all three lectures for free on YouTube.


31 May 2021 Celebrating CAZy: The B.A. Stone Award for Excellence in Plant Polysaccharide Biochemistry was awarded to CAZy founder Bernard Henrissat today. CAZy, CAZypedia, and Prof. Bruce Stone have a long, intertwined history, and today we celebrate Bernie's insight to create a sequence-based classification of the Carbohydrate-Active EnZymes, starting with the cellulases.