CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "User:Anne Tondervik"

From CAZypedia
Jump to navigation Jump to search
Line 1: Line 1:
 
[[Image:Anne_tondervik_sintef_no_MThumb.jpg|200px|right]]
 
[[Image:Anne_tondervik_sintef_no_MThumb.jpg|200px|right]]
  
 
+
Anne Tøndervik is a senior research scientist in the group of Biotechnology (headed by Håvard Sletta) at SINTEF Industry, Trondheim. She finished her PhD studies in procaryotic molecular biology (osmotic tolerance in bacteria) at NTNU in 2005 and has been working at SINTEF since 2008. The Biotechnology group has been collaborating closely with NOBIPOL at NTNU for many years on understanding the genetics of microbial alginate biosynthesis as well as establishing efficient production processes for microbial alginate. The work has also included engineering and activity screening of alginate modifying enzymes, and enzymatic tailoring of alginates for diverse applications.
  
 
== References ==
 
== References ==

Revision as of 02:17, 24 September 2020

Anne tondervik sintef no MThumb.jpg

Anne Tøndervik is a senior research scientist in the group of Biotechnology (headed by Håvard Sletta) at SINTEF Industry, Trondheim. She finished her PhD studies in procaryotic molecular biology (osmotic tolerance in bacteria) at NTNU in 2005 and has been working at SINTEF since 2008. The Biotechnology group has been collaborating closely with NOBIPOL at NTNU for many years on understanding the genetics of microbial alginate biosynthesis as well as establishing efficient production processes for microbial alginate. The work has also included engineering and activity screening of alginate modifying enzymes, and enzymatic tailoring of alginates for diverse applications.

References

  1. Tøndervik A, Klinkenberg G, Aarstad OA, Drabløs F, Ertesvåg H, Ellingsen TE, Skjåk-Bræk G, Valla S, and Sletta H. (2010). Isolation of mutant alginate lyases with cleavage specificity for di-guluronic acid linkages. J Biol Chem. 2010;285(46):35284-92. DOI:10.1074/jbc.M110.162800 | PubMed ID:20826807 [tondervik2010]
  2. Stenvik J, Sletta H, Grimstad Ø, Pukstad B, Ryan L, Aune R, Strand W, Tøndervik A, Torp SH, Skjåk-Braek G, and Espevik T. (2012). Alginates induce differentiation and expression of CXCR7 and CXCL12/SDF-1 in human keratinocytes--the role of calcium. J Biomed Mater Res A. 2012;100(10):2803-12. DOI:10.1002/jbm.a.34219 | PubMed ID:22623322 [stenvik2012]
  3. Khan S, Tøndervik A, Sletta H, Klinkenberg G, Emanuel C, Onsøyen E, Myrvold R, Howe RA, Walsh TR, Hill KE, and Thomas DW. (2012). Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother. 2012;56(10):5134-41. DOI:10.1128/AAC.00525-12 | PubMed ID:22825116 [Khan2012]
  4. Aarstad OA, Tøndervik A, Sletta H, and Skjåk-Bræk G. (2012). Alginate sequencing: an analysis of block distribution in alginates using specific alginate degrading enzymes. Biomacromolecules. 2012;13(1):106-16. DOI:10.1021/bm2013026 | PubMed ID:22148348 [aarstad2012]
  5. Tøndervik A, Klinkenberg G, Aachmann FL, Svanem BI, Ertesvåg H, Ellingsen TE, Valla S, Skjåk-Bræk G, and Sletta H. (2013). Mannuronan C-5 epimerases suited for tailoring of specific alginate structures obtained by high-throughput screening of an epimerase mutant library. Biomacromolecules. 2013;14(8):2657-66. DOI:10.1021/bm4005194 | PubMed ID:23808543 [tondervik2013]
  6. Buchinger E, Knudsen DH, Behrens MA, Pedersen JS, Aarstad OA, Tøndervik A, Valla S, Skjåk-Bræk G, Wimmer R, and Aachmann FL. (2014). Structural and functional characterization of the R-modules in alginate C-5 epimerases AlgE4 and AlgE6 from Azotobacter vinelandii. J Biol Chem. 2014;289(45):31382-96. DOI:10.1074/jbc.M114.567008 | PubMed ID:25266718 [buchinger2016]
  7. Tøndervik A, Sletta H, Klinkenberg G, Emanuel C, Powell LC, Pritchard MF, Khan S, Craine KM, Onsøyen E, Rye PD, Wright C, Thomas DW, and Hill KE. (2014). Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida and Aspergillus spp. PLoS One. 2014;9(11):e112518. DOI:10.1371/journal.pone.0112518 | PubMed ID:25409186 [tondervik2014]
  8. Eide KB, Stockinger LW, Lewin AS, Tøndervik A, Eijsink VG, and Sørlie M. (2016). The role of active site aromatic residues in substrate degradation by the human chitotriosidase. Biochim Biophys Acta. 2016;1864(2):242-7. DOI:10.1016/j.bbapap.2015.11.007 | PubMed ID:26621384 [eide2016]
  9. Stockinger LW, Eide KB, Dybvik AI, Sletta H, Vårum KM, Eijsink VG, Tøndervik A, and Sørlie M. (2015). The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase. Biochim Biophys Acta. 2015;1854(10 Pt A):1494-501. DOI:10.1016/j.bbapap.2015.06.008 | PubMed ID:26116146 [stockinger2015]
  10. Tøndervik A, Klinkenberg G, Aune R, Rye PD, Sletta H (2017) Alginate oligomers inhibit growth of bacteria causing bovine mastitis and potentiate the activity of antibiotics used for treatment of the disease. Advances in Dairy Research, vol. 5, no. 3 DOI:10.4172/2329-888X.1000186

    [tondervik2017]
  11. Stanisci A, Aarstad OA, Tøndervik A, Sletta H, Dypås LB, Skjåk-Bræk G, and Aachmann FL. (2018). Overall size of mannuronan C5-Epimerases influences their ability to epimerize modified alginates and alginate gels. Carbohydr Polym. 2018;180:256-263. DOI:10.1016/j.carbpol.2017.09.094 | PubMed ID:29103504 [Stanisci2017]
  12. T12. Rye PD, Tøndervik A, Sletta H, Pritchard M, Kristiansen A, Dessen A, Thomas DW (2017) Alginate oligomers and their use as active pharmaceutical drugs. In Alginates and their biomedical applications. Editors: BHA Rehm and MF Moradali

    [Rye2017]
  13. Aarstad OA, Stanisci A, Sætrom GI, Tøndervik A, Sletta H, Aachmann FL, and Skjåk-Bræk G. (2019). Biosynthesis and Function of Long Guluronic Acid-Blocks in Alginate Produced by Azotobacter vinelandii. Biomacromolecules. 2019;20(4):1613-1622. DOI:10.1021/acs.biomac.8b01796 | PubMed ID:30844259 [aarstad2019]
  14. Mærk M, Jakobsen ØM, Sletta H, Klinkenberg G, Tøndervik A, Ellingsen TE, Valla S, and Ertesvåg H. (2019). Identification of Regulatory Genes and Metabolic Processes Important for Alginate Biosynthesis in Azotobacter vinelandii by Screening of a Transposon Insertion Mutant Library. Front Bioeng Biotechnol. 2019;7:475. DOI:10.3389/fbioe.2019.00475 | PubMed ID:32010681 [merk2020]
  15. Stanisci A, Tøndervik A, Gaardløs M, Lervik A, Skjåk-Bræk G, Sletta H, and Aachmann FL. (2020). Identification of a Pivotal Residue for Determining the Block Structure-Forming Properties of Alginate C-5 Epimerases. ACS Omega. 2020;5(8):4352-4361. DOI:10.1021/acsomega.9b04490 | PubMed ID:32149266 [stanisci2020]
  16. Hreggviðsson GÓ, Nordberg-Karlsson EM, Tøndervik A, Aachmann FL, Dobruchowska JM, Linares-Pastén J, Daugbjerg-Christensen M, Moneart A, Kristjansdottir T, Sletta H, Fridjonsson OH, Aasen IM (2020)Biocatalytic refining of polysaccharides from brown seaweeds. In: Torres MD, Kraan S, Dominguez H (eds) Sustainable Seaweed Technologies. Elsevier, pp. 447-504 DOI:10.1016/B978-0-12-817943-7.00016-0

    [Hreggvisson2020]

All Medline abstracts: PubMed