CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "User:Zachary Armstrong"

From CAZypedia
Jump to navigation Jump to search
Line 1: Line 1:
[[Image:Blank_user-200px.png|200px|right]]
+
[[Image:Z_Armstrong.png|200px|right]]
  
Dr. Zachary Armstrong, a native of Iqaluit, Nunavut, obtained his B.Sc. — majoring in chemistry and biochemistry — from the University of British Columbia (https://www.ubc.ca/). His final year project, performed under the guidance of [[User:Steve Withers|Steve Withers]], focused on the creation of a [[GH11]] thioglycoligase <cite>Armstrong2010</cite>. He completed his PhD at the University of British Columbia, co-supervised by Professor Steven Withers and Stephen Hallam. This work focused on the identification of glycoside hydrolases from metagenomic sources — including the beaver gut<cite>Armstrong2018</cite>,a mining bioreactor<cite>Armstrong2013</cite> and soils<cite>Armstrong2019mSys</cite>— and the engineering of glycosynthases from a metagenomes and synthetic gene libraries (ref). In 2018 he joined the group of [[User:Gideon Davies|Gideon Davies]] in the York Structural Biology Laboratories (https://www.york.ac.uk/chemistry/research/ysbl/ ) at the University of York (https://www.york.ac.uk/as a postdoctoral research associate. His current work focuses on mechanism-based inhibitors and activity-based protein profiling of human carbohydrate processing enzymes.
+
Dr. Zachary Armstrong, a native of Iqaluit, Nunavut, obtained his B.Sc. — majoring in chemistry and biochemistry — from the [https://www.ubc.ca/ University of British Columbia]. His final year project, performed under the guidance of Professor [[User:Steve Withers|Steve Withers]], focused on the creation of a [[GH11]] thioglycoligase <cite>Armstrong2010</cite>. He completed his PhD at the University of British Columbia, co-supervised by Professors Steven Withers and Stephen J. Hallam. This work focused on the identification of glycoside hydrolases from metagenomic sources — including the beaver gut<cite>Armstrong2018</cite>,a mining bioreactor<cite>Armstrong2013</cite> and soils<cite>Armstrong2019mSys</cite>— and the engineering of glycosynthases from a metagenomes and synthetic gene libraries (ref). In 2018 he joined the group of [[User:Gideon Davies|Gideon Davies]] in the [https://www.york.ac.uk/chemistry/research/ysbl/ York Structural Biology Laboratories] at the [https://www.york.ac.uk/ University of York] as a postdoctoral research associate. His current work focuses on mechanism-based inhibitors and activity-based protein profiling of human carbohydrate processing enzymes.
  
 
He has determined the crystal structure of :
 
He has determined the crystal structure of :
  
 
* [[GH164]] ''Bacteroides salyersiae'' beta-mannosidase <cite> </cite>           
 
* [[GH164]] ''Bacteroides salyersiae'' beta-mannosidase <cite> </cite>           
 
* See [[User:Gerlind_Sulzenbacher]] for an example.  You may copy text from this example by opening the page in another browser window and clicking the "Edit" tab.
 
* Add your publications in the list below using PubMed IDs and cite them in the text like this <cite>Gilbert2008</cite>.
 
* Please upload a picture of yourself using the "Upload file" link in the Toolbox section of the left menu, and then replace the Image filename with your own.
 
 
''More specific help on these steps is available from the links under the "For contributors" section of the left page menu.''
 
  
  

Revision as of 07:13, 2 April 2020

Z Armstrong.png

Dr. Zachary Armstrong, a native of Iqaluit, Nunavut, obtained his B.Sc. — majoring in chemistry and biochemistry — from the University of British Columbia. His final year project, performed under the guidance of Professor Steve Withers, focused on the creation of a GH11 thioglycoligase [1]. He completed his PhD at the University of British Columbia, co-supervised by Professors Steven Withers and Stephen J. Hallam. This work focused on the identification of glycoside hydrolases from metagenomic sources — including the beaver gut[2],a mining bioreactor[3] and soils[4]— and the engineering of glycosynthases from a metagenomes and synthetic gene libraries (ref). In 2018 he joined the group of Gideon Davies in the York Structural Biology Laboratories at the University of York as a postdoctoral research associate. His current work focuses on mechanism-based inhibitors and activity-based protein profiling of human carbohydrate processing enzymes.

He has determined the crystal structure of :

  • GH164 Bacteroides salyersiae beta-mannosidase []



  1. Armstrong Z, Reitinger S, Kantner T, and Withers SG. (2010). Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase. Chembiochem. 2010;11(4):533-8. DOI:10.1002/cbic.200900711 | PubMed ID:20112321 [Armstrong2010]
  2. Armstrong Z, Mewis K, Liu F, Morgan-Lang C, Scofield M, Durno E, Chen HM, Mehr K, Withers SG, and Hallam SJ. (2018). Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome. ISME J. 2018;12(11):2757-2769. DOI:10.1038/s41396-018-0215-9 | PubMed ID:30013164 [Armstrong2018]
  3. Mewis K, Armstrong Z, Song YC, Baldwin SA, Withers SG, and Hallam SJ. (2013). Biomining active cellulases from a mining bioremediation system. J Biotechnol. 2013;167(4):462-71. DOI:10.1016/j.jbiotec.2013.07.015 | PubMed ID:23906845 [Armstrong2013]
  4. Armstrong Z, Liu F, Kheirandish S, Chen HM, Mewis K, Duo T, Morgan-Lang C, Hallam SJ, and Withers SG. (2019). High-Throughput Recovery and Characterization of Metagenome-Derived Glycoside Hydrolase-Containing Clones as a Resource for Biocatalyst Development. mSystems. 2019;4(4). DOI:10.1128/mSystems.00082-19 | PubMed ID:31164449 [Armstrong2019mSys]

All Medline abstracts: PubMed