CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Margrethe Gaardlos"
Line 1: | Line 1: | ||
[[Image:Profilbilde.jpg|200px|right]] | [[Image:Profilbilde.jpg|200px|right]] | ||
− | Margrethe Gaardløs obtained her M.Sc. in Biotechnology at the Norwegian University of Life Sciences in 2015, working on biochemical characterization of lytic polysaccharide monooxygenases. She obtained a PhD in Biotechnology at the Norwegian University of Science and Technology in Trondheim, Norway, supervised by Professor [[User:Finn Aachmann|Finn Aachmann]] and co-supervised by [[User:Anne Tondervik|Anne Tondervik]]. During her PhD she studied the alginate epimerases produced by ''Azotobacter vinelandii''. The work focused on understanding the enzyme-substrate interactions, mechanism and mode of action of these enzymes through mutational studies and biochemical and biophysical analysis (<cite>stanisci2020</cite>, <cite>gaardlos2021a</cite>, <cite>gaardlos2021b</cite>). She is currently a postdoctoral researcher in the group of Sergey Samsonov at University of Gdańsk, Poland, where she works with computational modeling of | + | Margrethe Gaardløs obtained her M.Sc. in Biotechnology at the Norwegian University of Life Sciences in 2015, working on biochemical characterization of lytic polysaccharide monooxygenases. She obtained a PhD in Biotechnology at the Norwegian University of Science and Technology in Trondheim, Norway, supervised by Professor [[User:Finn Aachmann|Finn Aachmann]] and co-supervised by [[User:Anne Tondervik|Anne Tondervik]]. During her PhD she studied the alginate epimerases produced by ''Azotobacter vinelandii''. The work focused on understanding the enzyme-substrate interactions, mechanism and mode of action of these enzymes through mutational studies and biochemical and biophysical analysis (<cite>stanisci2020</cite>, <cite>gaardlos2021a</cite>, <cite>gaardlos2021b</cite>). She is currently a postdoctoral researcher in the group of Sergey Samsonov at University of Gdańsk, Poland, where she works with computational modeling of glycosaminoglycans, various proteins, and their interactions. |
Latest revision as of 11:36, 3 January 2022
Margrethe Gaardløs obtained her M.Sc. in Biotechnology at the Norwegian University of Life Sciences in 2015, working on biochemical characterization of lytic polysaccharide monooxygenases. She obtained a PhD in Biotechnology at the Norwegian University of Science and Technology in Trondheim, Norway, supervised by Professor Finn Aachmann and co-supervised by Anne Tondervik. During her PhD she studied the alginate epimerases produced by Azotobacter vinelandii. The work focused on understanding the enzyme-substrate interactions, mechanism and mode of action of these enzymes through mutational studies and biochemical and biophysical analysis ([1], [2], [3]). She is currently a postdoctoral researcher in the group of Sergey Samsonov at University of Gdańsk, Poland, where she works with computational modeling of glycosaminoglycans, various proteins, and their interactions.
- Stanisci A, Tøndervik A, Gaardløs M, Lervik A, Skjåk-Bræk G, Sletta H, and Aachmann FL. (2020). Identification of a Pivotal Residue for Determining the Block Structure-Forming Properties of Alginate C-5 Epimerases. ACS Omega. 2020;5(8):4352-4361. DOI:10.1021/acsomega.9b04490 |
- Gaardløs M, Samsonov SA, Sletmoen M, Hjørnevik M, Sætrom GI, Tøndervik A, and Aachmann FL. (2021). Insights into the roles of charged residues in substrate binding and mode of action of mannuronan C-5 epimerase AlgE4. Glycobiology. 2021;31(12):1616-1635. DOI:10.1093/glycob/cwab025 |
- Gaardløs M, Heggeset TMB, Tøndervik A, Tezé D, Svensson B, Ertesvåg H, Sletta H, and Aachmann FL. (2022). Mechanistic Basis for Understanding the Dual Activities of the Bifunctional Azotobacter vinelandii Mannuronan C-5-Epimerase and Alginate Lyase AlgE7. Appl Environ Microbiol. 2022;88(3):e0183621. DOI:10.1128/AEM.01836-21 |