CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.
CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.
Difference between revisions of "Carbohydrate Binding Module Family 13"
| Line 23: | Line 23: | ||
== Structural Features == | == Structural Features == | ||
| − | + | CBM13 proteins are Type C domains, comprising 3 internal subdomains (α, β, and γ), each approximately 40 residues in length, which fold in similar ways around a pseudo-3-fold axis, giving rise to a β-trefoil tertiary structure (Fig. 1), as is also common for plant lectins. The ligand binding site in each subdomain is found in a surface exposed pocket, where binding is principally facilitated by tyrosine and aspartate residues found conserved within each subdomain. The binding sites are designated as a, b, and g, referring to the subdomain in which they are found. The same naming system has been used for the other multivalent β-trefoil members families CBM42 and CBM92, which share the same modular structure as CBM13 domains. | |
| − | |||
| − | |||
| − | |||
| − | |||
== Functionalities == | == Functionalities == | ||
''Content in this section should include, in paragraph form, a description of:'' | ''Content in this section should include, in paragraph form, a description of:'' | ||
Revision as of 05:14, 29 October 2025
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
| CAZy DB link | |
| https://www.cazy.org/CBM13.html |
Ligand specificities
Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.
Note: Here is an example of how to insert references in the text, together with the "biblio" section below: Please see these references for an essential introduction to the CAZy classification system: [1, 2]. CBMs, in particular, have been extensively reviewed [3, 4, 5, 6, 7].
Structural Features
CBM13 proteins are Type C domains, comprising 3 internal subdomains (α, β, and γ), each approximately 40 residues in length, which fold in similar ways around a pseudo-3-fold axis, giving rise to a β-trefoil tertiary structure (Fig. 1), as is also common for plant lectins. The ligand binding site in each subdomain is found in a surface exposed pocket, where binding is principally facilitated by tyrosine and aspartate residues found conserved within each subdomain. The binding sites are designated as a, b, and g, referring to the subdomain in which they are found. The same naming system has been used for the other multivalent β-trefoil members families CBM42 and CBM92, which share the same modular structure as CBM13 domains.
Functionalities
Content in this section should include, in paragraph form, a description of:
- Functional role of CBM: Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
- Most Common Associated Modules: 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
- Novel Applications: Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.
Family Firsts
- First Identified
- Insert archetype here, possibly including very brief synopsis.
- First Structural Characterization
- Insert archetype here, possibly including very brief synopsis.
References
-
Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. DOI:10.1042/BIO03004026.
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 |
- Boraston AB, Bolam DN, Gilbert HJ, and Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(Pt 3):769-81. DOI:10.1042/BJ20040892 |
- Hashimoto H (2006). Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci. 2006;63(24):2954-67. DOI:10.1007/s00018-006-6195-3 |
- Shoseyov O, Shani Z, and Levy I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283-95. DOI:10.1128/MMBR.00028-05 |
- Guillén D, Sánchez S, and Rodríguez-Sanoja R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241-9. DOI:10.1007/s00253-009-2331-y |
- Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, and Rodríguez-Sanoja R. (2017). Advances in molecular engineering of carbohydrate-binding modules. Proteins. 2017;85(9):1602-1617. DOI:10.1002/prot.25327 |