CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 86"

From CAZypedia
Jump to navigation Jump to search
Line 1: Line 1:
{{UnderConstruction}}
+
{{CuratorApproved}}
 
* [[Author]]: ^^^Mirjam Czjzek^^^
 
* [[Author]]: ^^^Mirjam Czjzek^^^
 
* [[Responsible Curator]]:  ^^^Mirjam Czjzek^^^
 
* [[Responsible Curator]]:  ^^^Mirjam Czjzek^^^

Revision as of 05:32, 19 November 2010

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH86
Clan GH-A
Mechanism probably retaining
Active site residues inferred from clan GH-A as two Glu
CAZy DB link
http://www.cazy.org/GH86.html


Substrate specificities

To date, all characterized glycoside hydrolases of family 86 are β-agarases (EC 3.2.1.81) that cleave β-1,4 glycosidic bonds of agarose. To date three enzymes have been characterized: AgrA from Pseudoalteromonas atlantica, AgaO from Microbulbifer thermotolerans JAMB-A94 and Aga86E from Saccharophagus degradans 2-40 [1, 2, 3]. AgaO from M. thermotolerans was reported to be an endo-hydrolytic enzyme, releasing neoagaro-hexaose as main product [2], while the recombinant Aga86E from S. degradans released only neoagarobiose in an exo-acting manner [3].


Kinetics and Mechanism

Actually, a potential retaining mechanism of this glycoside hydrolase family can only be inferred from analogy to clan GH-A enzymes http://www.cazy.org/GH86.html. No mechanistic or kintetic analysis demonstrating the stereochemical outcome of the reaction have been reported for this family to date.


Catalytic Residues

Actually, the catalytic residues can only be inferred from analogy to clan GH-A enzymes as two glutamate residues.


Three-dimensional structures

No 3D structure is available to date.


Family Firsts

Identification of first family member
The first member of this family, AgrA, was identified in Pseudoalteromonas atlantica [1].
First stereochemistry determination
not determined yet.
First catalytic nucleophile identification
not determined yet.
First general acid/base residue identification
not determined yet.
First 3-D structure
not determined yet.

References

  1. Belas R (1989). Sequence analysis of the agrA gene encoding beta-agarase from Pseudomonas atlantica. J Bacteriol. 1989;171(1):602-5. DOI:10.1128/jb.171.1.602-605.1989 | PubMed ID:2914859 [REF1]
  2. Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, and Horikoshi K. (2004). Cloning, expression, and characterization of a glycoside hydrolase family 86 beta-agarase from a deep-sea Microbulbifer-like isolate. Appl Microbiol Biotechnol. 2004;66(3):266-75. DOI:10.1007/s00253-004-1757-5 | PubMed ID:15490156 [REF2]
  3. Ekborg NA, Taylor LE, Longmire AG, Henrissat B, Weiner RM, and Hutcheson SW. (2006). Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl Environ Microbiol. 2006;72(5):3396-405. DOI:10.1128/AEM.72.5.3396-3405.2006 | PubMed ID:16672483 [REF3]

All Medline abstracts: PubMed