CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.
CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycosyltransferase Family 138"
| Line 48: | Line 48: | ||
== References == | == References == | ||
<biblio> | <biblio> | ||
| + | #Peng2024 pmid=38354245 | ||
| + | #Kinch2009 pmid=19503829 | ||
#Cantarel2009 pmid=18838391 | #Cantarel2009 pmid=18838391 | ||
#DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. ''The Biochemist'', vol. 30, no. 4., pp. 26-32. [https://doi.org/10.1042/BIO03004026 DOI:10.1042/BIO03004026]. | #DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. ''The Biochemist'', vol. 30, no. 4., pp. 26-32. [https://doi.org/10.1042/BIO03004026 DOI:10.1042/BIO03004026]. | ||
Revision as of 22:14, 31 January 2025
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
| Glycosyltransferase Family GT138 | |
| Clan | Fido |
| Mechanism | Inverting |
| Active site residues | Known |
| CAZy DB link | |
| https://www.cazy.org/GT138.html | |
Substrate specificities
GT138 family of glycosyltransferase is exemplified by AvrB that contains a Fido domain [1, 2]. Proteins with Fido domain are diverse enzymes with activities of AMPylation, phosphorylation, UMPylation, and phosphocholination. AvrB is a bacterial effector from the plant pathogen Pseudomonas syringae. AvrB utilizes UDP-rhamnose or dTDP-rhamnose as a co-substrate to modify the host protein RIN4 and causes the programmed cell death (namely hypersensitive response).
Kinetics and Mechanism
Content is to be added here.
Catalytic Residues
Content is to be added here.
Three-dimensional structures
Content is to be added here.
Family Firsts
- First stereochemistry determination
- Content is to be added here.
- First catalytic nucleophile identification
- Content is to be added here.
- First general acid/base residue identification
- Content is to be added here.
- First 3-D structure
- Content is to be added here.
References
- Peng W, Garcia N, Servage KA, Kohler JJ, Ready JM, Tomchick DR, Fernandez J, and Orth K. (2024). Pseudomonas effector AvrB is a glycosyltransferase that rhamnosylates plant guardee protein RIN4. Sci Adv. 2024;10(7):eadd5108. DOI:10.1126/sciadv.add5108 |
- Kinch LN, Yarbrough ML, Orth K, and Grishin NV. (2009). Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS One. 2009;4(6):e5818. DOI:10.1371/journal.pone.0005818 |
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 |
-
Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. DOI:10.1042/BIO03004026.