CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

User:Vincent Eijsink

From CAZypedia
Revision as of 10:26, 15 January 2018 by Vincent Eijsink (talk | contribs)
Jump to navigation Jump to search
Vincent Bilde.jpg

Vincent Eijsink obtained an MSc in Molecular Sciences (Biochemistry) from Wageningen University and completed his PhD at the Groningen Biomolecular Sciences and Biotechnology Institute under the supervision of Gerard Venema in 1991. During his Ph.D. studies, focusing on the engineering of protein stability, he was co-supervised by Herman Berendsen, Bauke Dijkstra and Gert Vriend and he had several short stays in the Bioinformatics group at EMBL. In 1993, he moved to what is now called the Norwegian University of Life Sciences (NMBU), in Ås, Norway, where he became a full professor of Biochemistry in 1997. Work on CAZymes started off with work on family 18 chitinases in the late 1990s, resulting in several papers on the structure and function of these enzymes [1, 2]. Current chitin-related work focuses on family 18 chitinases [3, 4, 5] and family 19 chitinases [6], whereas the group has a growing interest and activity in chitin deacetylases (CE family 4) [7, 8]. Recent research includes CAZyme discovery [9, 10, 11]. The Eijsink group is probably best known for the discovery of lytic polysaccharide monooxygenases (LPMOs) in 2010 [12] (AA family 10) after originally having detected chitinase boosting activity of what we now know is a chitin-active family AA10 LPMO in 2005 [13]. The group demonstrated AA10 activity on cellulose [14, 15] and was the first to describe activity of AA9 LPMOs (AA family 11) on soluble substrates [16] and beta-glucan hemicelluloses [17, 18]. Recent developments include studies of both AA9 and AA10, addressing topics such as substrate-binding [19], LPMO activation [20], and the involvement of hydrogen peroxide in LPMO action [21, 22] test.

References

Error fetching PMID 17116887:
Error fetching PMID 19244232:
Error fetching PMID 23398882:
Error fetching PMID 17010167:
Error fetching PMID 28496100:
Error fetching PMID 29107991:
Error fetching PMID 22701672:
Error fetching PMID 27933102:
Error fetching PMID 15929981:
Error fetching PMID 21748815:
Error fetching PMID 26178376:
Error fetching PMID 27152023:
Error fetching PMID 27643617:
Error fetching PMID 28846668:
Error fetching PMID 29138240:
  1. van Aalten DM, Synstad B, Brurberg MB, Hough E, Riise BW, Eijsink VG, and Wierenga RK. (2000). Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. Proc Natl Acad Sci U S A. 2000;97(11):5842-7. DOI:10.1073/pnas.97.11.5842 | PubMed ID:10823940 [VanAalten2000]
  2. van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, and Eijsink VG. (2001). Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A. 2001;98(16):8979-84. DOI:10.1073/pnas.151103798 | PubMed ID:11481469 [VanAalten2001]
  3. Error fetching PMID 17116887: [Horn2006]
  4. Error fetching PMID 19244232: [Zakariassen2009]
  5. Error fetching PMID 23398882: [Vaaje-Kolstad2013]
  6. Error fetching PMID 17010167: [Hoell2006]
  7. Error fetching PMID 28496100: [Liu2017]
  8. Error fetching PMID 29107991: [Tuveng2017]
  9. Error fetching PMID 22701672: [Pope2012]
  10. Error fetching PMID 27933102: [Larsbrink2016]
  11. Tuveng TR, Arntzen MØ, Bengtsson O, Gardner JG, Vaaje-Kolstad G, and Eijsink VG. (2016). Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin. Proteomics. 2016;16(13):1904-14. DOI:10.1002/pmic.201500419 | PubMed ID:27169553 [Tuvengb2017]
  12. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, and Eijsink VG. (2010). An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219-22. DOI:10.1126/science.1192231 | PubMed ID:20929773 [Vaaje-Kolstad2010]
  13. Error fetching PMID 15929981: [Vaaje-Kolstad2005]
  14. Error fetching PMID 21748815: [Forsberg2011]
  15. Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, Vaaje-Kolstad G, and Eijsink VG. (2014). Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 2014;111(23):8446-51. DOI:10.1073/pnas.1402771111 | PubMed ID:24912171 [Forsberg2014]
  16. Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, and Horn SJ. (2014). A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem. 2014;289(5):2632-42. DOI:10.1074/jbc.M113.530196 | PubMed ID:24324265 [Isaksen2014]
  17. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, and Westereng B. (2014). Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A. 2014;111(17):6287-92. DOI:10.1073/pnas.1323629111 | PubMed ID:24733907 [Agger2014]
  18. Error fetching PMID 26178376: [Borisova2015]
  19. Error fetching PMID 27152023: [Courtade2016]
  20. Error fetching PMID 27643617: [Loose2016]
  21. Error fetching PMID 28846668: [Bissaro2017]
  22. Error fetching PMID 29138240: [Kuusk2018]

All Medline abstracts: PubMed