CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Auxiliary Activity Family 5

From CAZypedia
Revision as of 15:13, 9 September 2021 by Maria Cleveland (talk | contribs)
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Auxiliary Activity Family AA5
Fold Seven-bladed β-propeller
Mechanism Copper Radical Oxidase
Active site residues known
CAZy DB link
http://www.cazy.org/AA5.html


Substrate specificities

Content is to be added here.

Authors may get an idea of what to put in each field from Curator Approved Auxiliary Activity Families and Glycoside Hydrolase Families. (TIP: Right click with your mouse and open this link in a new browser window...)

In the meantime, please see these references for an essential introduction to the CAZy classification system: [1, 2].

Kinetics and Mechanism

Content is to be added here.

Catalytic Residues

Content is to be added here.

Three-dimensional structures

AA5 share a seven-bladed β-propeller fold [3, 4, 5] as the catalytic domain containing the active site.

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  2. Yin DT, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin JG, Henrissat B, Walton PH, Davies GJ, and Brumer H. (2015). Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun. 2015;6:10197. DOI:10.1038/ncomms10197 | PubMed ID:26680532 [Yin2015]
  3. Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, and Whittaker JW. (1996). Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem. 1996;271(2):681-7. DOI:10.1074/jbc.271.2.681 | PubMed ID:8557673 [Whittaker1996]
  4. Whittaker JW (2003). Free radical catalysis by galactose oxidase. Chem Rev. 2003;103(6):2347-63. DOI:10.1021/cr020425z | PubMed ID:12797833 [Whittaker2003]
  5. Andberg M, Mollerup F, Parikka K, Koutaniemi S, Boer H, Juvonen M, Master E, Tenkanen M, and Kruus K. (2017). A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Appl Environ Microbiol. 2017;83(20). DOI:10.1128/AEM.01383-17 | PubMed ID:28778886 [Andberg2017]
  6. Oide S, Tanaka Y, Watanabe A, and Inui M. (2019). Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme Microb Technol. 2019;125:13-20. DOI:10.1016/j.enzmictec.2019.02.009 | PubMed ID:30885320 [Oide2019]
  7. Mathieu, Y., Offen, W. A., Forget, S. M., Ciano, L., Viborg, A. H., Blagova, E., Henrissat, B., Walton, P.H, Davies, G.J, and Brumer, H. (2020). Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catalysis, 10(5), 3042-3058. https://pubs.acs.org/doi/abs/10.1021/acscatal.9b04727

    [Mathieu2020]
  8. Kersten PJ and Kirk TK. (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987;169(5):2195-201. DOI:10.1128/jb.169.5.2195-2201.1987 | PubMed ID:3553159 [Kersten1987]
  9. Ögel, Z. B.; Brayford, D.; McPherson, M. J., (1994). Cellulose-triggered sporulation in the galactose oxidase-producing fungus Cladobotryum (Dactylium) dendroides NRRL 2903 and its re-identification as a species of Fusarium. Mycol. Res., 98 (4), 474-480. https://doi.org/10.1016/j.pep.2014.12.010

    [Ogel1994]
  10. COOPER JA, SMITH W, BACILA M, and MEDINA H. (1959). Galactose oxidase from Polyporus circinatus, Fr. J Biol Chem. 1959;234(3):445-8. | Google Books | Open Library PubMed ID:13641238 [Cooper1959]
  11. AMARAL D, BERNSTEIN L, MORSE D, and HORECKER BL. (1963). Galactose oxidase of Polyporus circinatus: a copper enzyme. J Biol Chem. 1963;238:2281-4. | Google Books | Open Library PubMed ID:14012475 [Amaral1963]
  12. Cleveland M, Lafond M, Xia FR, Chung R, Mulyk P, Hein JE, and Brumer H. (2021). Two Fusarium copper radical oxidases with high activity on aryl alcohols. Biotechnol Biofuels. 2021;14(1):138. DOI:10.1186/s13068-021-01984-0 | PubMed ID:34134727 [Cleveland2021a]
  13. PMID=24967652

    [Paukner2014]
  14. PMID=25543085

    [Paukner2015]
  15. PMID=31177409#Cantarel2009 pmid=18838391

    [Faria2019]

All Medline abstracts: PubMed