New to the CAZy classification? Read this first.
Want to learn more about CAZypedia? Read the CAZypedia 10th anniversary article in Glycobiology.

Difference between revisions of "Carbohydrate Binding Module Family 19"

From CAZypedia
Jump to navigation Jump to search
Line 29: Line 29:
  
 
== Functionalities ==  
 
== Functionalities ==  
 +
Chitin is an important component of the cell wall of ''Saccharomyces cerevisiae''.  It is specifically located at the junction of mother and daughter cells providing mechanical stability.  The CTS1 enzyme produced by ''S. cerevisiae''  hydrolyses chitin <cite>Correa1982 Kuranda1987</cite>.
 +
 +
 +
 
''Content in this section should include, in paragraph form, a description of:''
 
''Content in this section should include, in paragraph form, a description of:''
 
* '''Functional role of CBM:''' Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
 
* '''Functional role of CBM:''' Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.

Revision as of 02:23, 21 January 2021

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


CAZy DB link
http://www.cazy.org/CBMnn.html

Ligand specificities

Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.

Note: Here is an example of how to insert references in the text, together with the "biblio" section below: Please see these references for an essential introduction to the CAZy classification system: [1, 2]. CBMs, in particular, have been extensively reviewed [3, 4, 5, 6, 7].

Structural Features

Content in this section should include, in paragraph form, a description of:

  • Fold: Structural fold (beta trefoil, beta sandwich, etc.)
  • Type: Include here Type A, B, or C and properties
  • Features of ligand binding: Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.

Functionalities

Chitin is an important component of the cell wall of Saccharomyces cerevisiae. It is specifically located at the junction of mother and daughter cells providing mechanical stability. The CTS1 enzyme produced by S. cerevisiae hydrolyses chitin [8, 9].


Content in this section should include, in paragraph form, a description of:

  • Functional role of CBM: Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
  • Most Common Associated Modules: 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
  • Novel Applications: Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.

Family Firsts

First Identified
Insert archetype here, possibly including very brief synopsis.
First Structural Characterization
Insert archetype here, possibly including very brief synopsis.

References

  1. Correa JU, Elango N, Polacheck I, and Cabib E. (1982). Endochitinase, a mannan-associated enzyme from Saccharomyces cerevisiae. J Biol Chem. 1982;257(3):1392-7. | Google Books | Open Library PubMed ID:6799506 [Correa1982]
  2. Kuranda MJ and Robbins PW. (1987). Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1987;84(9):2585-9. DOI:10.1073/pnas.84.9.2585 | PubMed ID:3033651 [Kuranda1987]
  3. Kuranda MJ and Robbins PW. (1991). Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem. 1991;266(29):19758-67. | Google Books | Open Library PubMed ID:1918080 [Kuranda1991]

All Medline abstracts: PubMed