CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Glycoside Hydrolase Family 127"

From CAZypedia
Jump to navigation Jump to search
m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1")
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption -->
+
{{CuratorApproved}}
{{UnderConstruction}}
+
* [[Author]]: [[User:Kiyotaka Fujita|Kiyotaka Fujita]]
* [[Author]]: ^^^Kiyotaka Fujita^^^
+
* [[Responsible Curator]]:  [[User:Shinya Fushinobu|Shinya Fushinobu]]
* [[Responsible Curator]]:  ^^^Shinya Fushinobu^^^
 
 
----
 
----
  
Line 12: Line 11:
 
|-
 
|-
 
|'''Clan'''     
 
|'''Clan'''     
|GH-x
+
|none
 
|-
 
|-
 
|'''Mechanism'''
 
|'''Mechanism'''
Line 18: Line 17:
 
|-
 
|-
 
|'''Active site residues'''
 
|'''Active site residues'''
|not known
+
|known
 
|-
 
|-
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
Line 29: Line 28:
  
 
== Substrate specificities ==
 
== Substrate specificities ==
This family of [[glycoside hydrolases]] contains &beta;-L-arabinofuranosidase, which was recently established for HypBA1 from ''Bifidobacterium longum'' JCM 1217<cite>Fujita2011B</cite>. HypBA1 released L-arabinose from Ara''f''&beta;1-2Ara''f'' (&beta;-Ara<sub>2</sub>), Ara''f''&beta;-hydroxyproline (Ara-Hyp), Ara''f''&beta;1-2Ara''f''&beta;-Hyp (Ara<sub>2</sub>-Hyp), Ara''f''&beta;1-2Ara''f''&beta;1-2Ara''f''&beta;-hyp (Ara<sub>3</sub>-Hyp), methyl &beta;-L-arabinofuranoside and Ara''f''&beta;1-2Ara''f''&beta;-Me, but not from from hydroxyproline-rich glycoproteins (HRGPs) such as carrot extensin and potato lectin. The enzymes belonging to this family are also members of [http://pfam.sanger.ac.uk/family/DUF1680 Pfam DUF1680 family], conserved in many species of bacteria, actinomycetes, fugi, and plants.  
+
This family of [[glycoside hydrolases]] contains &beta;-L-arabinofuranosidase activity, which was established for HypBA1 from ''Bifidobacterium longum'' JCM 1217 <cite>Fujita2014</cite>. HypBA1 released L-arabinose from the following saccharides and amino acid glycoconjugates, but not from from hydroxyproline-rich glycoproteins (HRGPs) such as carrot extensin and potato lectin:
 +
* Ara''f''&beta;1-2Ara''f'' (&beta;-Ara<sub>2</sub>, a product of the [[GH121]] &beta;-L-arabinobiosidase from ''B. longum'' JCM 1217 <cite>Fujita2011A</cite>)
 +
* Ara''f''&beta;-hydroxyproline (Ara-Hyp)
 +
* Ara''f''&beta;1-2Ara''f''&beta;-Hyp (Ara<sub>2</sub>-Hyp)
 +
* Ara''f''&beta;1-2Ara''f''&beta;1-2Ara''f''&beta;-hyp (Ara<sub>3</sub>-Hyp)
 +
* methyl &beta;-L-arabinofuranoside
 +
* Ara''f''&beta;1-2Ara''f''&beta;-Me
 +
 
 +
The members of GH127 were previosuly known as members of the [http://pfam.sanger.ac.uk/family/DUF1680 Pfam DUF1680 family], which is conserved in many species of bacteria, actinomycetes, fungi, and plants. Establishment of GH127 by biochemical analysis thus resolved the "domain of unknown function" status of this PFAM family.
 +
 
 +
''Note: The original paper describing ''B. longum'' HypBA1 as the founding member of GH127 <cite>Fujita2011B</cite> was withdrawn in 2013 <cite>Fujita2013</cite> and a revised version was published in 2014 <cite>Fujita2014</cite>, to correct errors due to an inadvertent mix-up of sample tubes and data for the E338A and E366A mutants.''
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
HypBA1 is a retaining enzyme. The stereochemical course of the reaction was shown by transglycosylation activity toward 1-alkanols, such as methanol, and produced methyl &beta;-L-arabinofuranoside was identified by <sup>1</sup>H-NMR and <sup>13</sup>C-NMR analysis.
+
HypBA1 is a [[retaining]] enzyme. The stereochemical course of the reaction was shown by transglycosylation activity toward 1-alkanols, such as methanol, and produced methyl &beta;-L-arabinofuranoside was identified by <sup>1</sup>H-NMR and <sup>13</sup>C-NMR analysis <cite>Fujita2014</cite>
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Not known.
+
In the crystal structure of HypBA1, a Zn<sup>2+</sup> ion was bound to the active site <cite>Ito2014</cite>. A cysteine residue (Cys417), which is involved in the coordination of the Zn<sup>2+</sup>, was suggested to act as the nucleophile. Glu322 is possibly the acid/base catalyst. A possible reaction mechanism involving the cysteine residue as the nucleophile was suggested based on crystal structures, site-directed mutagenesis, some biochemical analysis, and quantum mechanical calculations <cite>Ito2014</cite>.
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
Not known.
+
HypBA1 from ''B. longum'' JCM 1217 <cite>Ito2014</cite>. It consists of a catalytic (&alpha;/&alpha;)<sub>6</sub> barrel domain and two additional &beta;-sandwich domains.
  
 
== Family Firsts ==
 
== Family Firsts ==
;First stereochemistry determination: This was determined with HypBA1 enzyme by measurement of glycosyl transfer reactions to methanol and the <sup>1</sup>H-NMR and<sup>13</sup>C-NMR spectra.
+
;First stereochemistry determination: This was determined with HypBA1 enzyme by measurement of glycosyl transfer reactions to methanol and the <sup>1</sup>H-NMR and<sup>13</sup>C-NMR spectra <cite>Fujita2011B</cite>.
;First catalytic nucleophile identification: No experimental proof.
+
;First [[catalytic nucleophile]] identification:  
;First general acid/base residue identification: No experimental proof.
+
;First [[general acid/base]] residue identification:  
;First 3-D structure: Not known.
+
;First 3-D structure: HypBA1 from ''B. longum'' JCM 1217 by X-ray crystallography <cite>Ito2014</cite>.
  
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
#Fujita2011B Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T.(2011)Characterization of a novel β-L-Arabinofuranosidase in Bifidobacterium longum: functional elucidation of A DUF1680 family member. J Biol Chem. 286(44), 38079-85.[http://www.ncbi.nlm.nih.gov/pubmed/21914802]
+
#Fujita2011A pmid=21149454
 +
#Fujita2011B pmid=21914802
 +
#Fujita2013 pmid=24143008
 +
#Fujita2014 pmid=24385433
 +
#Ito2014 pmid=24680821
 
</biblio>
 
</biblio>
  
  
 
[[Category:Glycoside Hydrolase Families|GH127]]
 
[[Category:Glycoside Hydrolase Families|GH127]]

Latest revision as of 14:18, 18 December 2021

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH127
Clan none
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/GH127.html


Substrate specificities

This family of glycoside hydrolases contains β-L-arabinofuranosidase activity, which was established for HypBA1 from Bifidobacterium longum JCM 1217 [1]. HypBA1 released L-arabinose from the following saccharides and amino acid glycoconjugates, but not from from hydroxyproline-rich glycoproteins (HRGPs) such as carrot extensin and potato lectin:

  • Arafβ1-2Araf (β-Ara2, a product of the GH121 β-L-arabinobiosidase from B. longum JCM 1217 [2])
  • Arafβ-hydroxyproline (Ara-Hyp)
  • Arafβ1-2Arafβ-Hyp (Ara2-Hyp)
  • Arafβ1-2Arafβ1-2Arafβ-hyp (Ara3-Hyp)
  • methyl β-L-arabinofuranoside
  • Arafβ1-2Arafβ-Me

The members of GH127 were previosuly known as members of the Pfam DUF1680 family, which is conserved in many species of bacteria, actinomycetes, fungi, and plants. Establishment of GH127 by biochemical analysis thus resolved the "domain of unknown function" status of this PFAM family.

Note: The original paper describing B. longum HypBA1 as the founding member of GH127 [3] was withdrawn in 2013 [4] and a revised version was published in 2014 [1], to correct errors due to an inadvertent mix-up of sample tubes and data for the E338A and E366A mutants.

Kinetics and Mechanism

HypBA1 is a retaining enzyme. The stereochemical course of the reaction was shown by transglycosylation activity toward 1-alkanols, such as methanol, and produced methyl β-L-arabinofuranoside was identified by 1H-NMR and 13C-NMR analysis [1]

Catalytic Residues

In the crystal structure of HypBA1, a Zn2+ ion was bound to the active site [5]. A cysteine residue (Cys417), which is involved in the coordination of the Zn2+, was suggested to act as the nucleophile. Glu322 is possibly the acid/base catalyst. A possible reaction mechanism involving the cysteine residue as the nucleophile was suggested based on crystal structures, site-directed mutagenesis, some biochemical analysis, and quantum mechanical calculations [5].

Three-dimensional structures

HypBA1 from B. longum JCM 1217 [5]. It consists of a catalytic (α/α)6 barrel domain and two additional β-sandwich domains.

Family Firsts

First stereochemistry determination
This was determined with HypBA1 enzyme by measurement of glycosyl transfer reactions to methanol and the 1H-NMR and13C-NMR spectra [3].
First catalytic nucleophile identification
First general acid/base residue identification
First 3-D structure
HypBA1 from B. longum JCM 1217 by X-ray crystallography [5].

References

  1. Fujita K, Takashi Y, Obuchi E, Kitahara K, and Suganuma T. (2014). Characterization of a novel β-L-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem. 2014;289(8):5240-9. DOI:10.1074/jbc.M113.528711 | PubMed ID:24385433 [Fujita2014]
  2. Fujita K, Sakamoto S, Ono Y, Wakao M, Suda Y, Kitahara K, and Suganuma T. (2011). Molecular cloning and characterization of a beta-L-Arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family. J Biol Chem. 2011;286(7):5143-50. DOI:10.1074/jbc.M110.190512 | PubMed ID:21149454 [Fujita2011A]
  3. Fujita K, Takashi Y, Obuchi E, Kitahara K, and Suganuma T. (2011). Characterization of a novel β-L-Arabinofuranosidase in Bifidobacterium longum: functional elucidation of A DUF1680 family member. J Biol Chem. 2011;286(44):38079-38085. DOI:10.1074/jbc.M111.248690 | PubMed ID:21914802 [Fujita2011B]
  4. Fujita K, Takashi Y, Obuchi E, Kitahara K, and Suganuma T. (2013). Characterization of a novel β-L-arabinofuranosidase in Bifidobacterium longum. Functional elucidation of a DUF1680 family member. J Biol Chem. 2013;288(42):30502. DOI:10.1074/jbc.A111.248690 | PubMed ID:24143008 [Fujita2013]
  5. Ito T, Saikawa K, Kim S, Fujita K, Ishiwata A, Kaeothip S, Arakawa T, Wakagi T, Beckham GT, Ito Y, and Fushinobu S. (2014). Crystal structure of glycoside hydrolase family 127 β-l-arabinofuranosidase from Bifidobacterium longum. Biochem Biophys Res Commun. 2014;447(1):32-7. DOI:10.1016/j.bbrc.2014.03.096 | PubMed ID:24680821 [Ito2014]

All Medline abstracts: PubMed