CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Glycoside Hydrolase Family 127"

From CAZypedia
Jump to navigation Jump to search
Line 29: Line 29:
 
== Substrate specificities ==
 
== Substrate specificities ==
 
This family of [[glycoside hydrolases]] contains &beta;-L-arabinofuranosidase activity, which was established for HypBA1 from ''Bifidobacterium longum'' JCM 1217 <cite>Fujita2011B</cite>. HypBA1 released L-arabinose from the following saccharides and amino acid glycoconjugates, but not from from hydroxyproline-rich glycoproteins (HRGPs) such as carrot extensin and potato lectin:
 
This family of [[glycoside hydrolases]] contains &beta;-L-arabinofuranosidase activity, which was established for HypBA1 from ''Bifidobacterium longum'' JCM 1217 <cite>Fujita2011B</cite>. HypBA1 released L-arabinose from the following saccharides and amino acid glycoconjugates, but not from from hydroxyproline-rich glycoproteins (HRGPs) such as carrot extensin and potato lectin:
* Ara''f''&beta;1-2Ara''f'' (&beta;-Ara<sub>2</sub>)
+
* Ara''f''&beta;1-2Ara''f'' (&beta;-Ara<sub>2</sub>, a product of the [[GH121]] &beta;-L-arabinobiosidase from ''B. longum'' JCM 1217)
 
* Ara''f''&beta;-hydroxyproline (Ara-Hyp)
 
* Ara''f''&beta;-hydroxyproline (Ara-Hyp)
 
* Ara''f''&beta;1-2Ara''f''&beta;-Hyp (Ara<sub>2</sub>-Hyp)
 
* Ara''f''&beta;1-2Ara''f''&beta;-Hyp (Ara<sub>2</sub>-Hyp)

Revision as of 13:39, 12 November 2012

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH127
Clan none
Mechanism retaining
Active site residues not known
CAZy DB link
http://www.cazy.org/GH127.html


Substrate specificities

This family of glycoside hydrolases contains β-L-arabinofuranosidase activity, which was established for HypBA1 from Bifidobacterium longum JCM 1217 [1]. HypBA1 released L-arabinose from the following saccharides and amino acid glycoconjugates, but not from from hydroxyproline-rich glycoproteins (HRGPs) such as carrot extensin and potato lectin:

  • Arafβ1-2Araf (β-Ara2, a product of the GH121 β-L-arabinobiosidase from B. longum JCM 1217)
  • Arafβ-hydroxyproline (Ara-Hyp)
  • Arafβ1-2Arafβ-Hyp (Ara2-Hyp)
  • Arafβ1-2Arafβ1-2Arafβ-hyp (Ara3-Hyp)
  • methyl β-L-arabinofuranoside
  • Arafβ1-2Arafβ-Me

The members of GH127 are also members of the Pfam DUF1680 family, which is conserved in many species of bacteria, actinomycetes, fungi, and plants. Establishment of GH127 by biochemical analysis thus resolves the "domain of unknown function" status of this PFAM family.

Kinetics and Mechanism

HypBA1 is a retaining enzyme. The stereochemical course of the reaction was shown by transglycosylation activity toward 1-alkanols, such as methanol, and produced methyl β-L-arabinofuranoside was identified by 1H-NMR and 13C-NMR analysis [1].

Catalytic Residues

Not known.

Three-dimensional structures

Not known.

Family Firsts

First stereochemistry determination
This was determined with HypBA1 enzyme by measurement of glycosyl transfer reactions to methanol and the 1H-NMR and13C-NMR spectra [1].
First catalytic nucleophile identification
No experimental proof.
First general acid/base residue identification
No experimental proof.
First 3-D structure
Not known.

References

  1. Fujita K, Takashi Y, Obuchi E, Kitahara K, and Suganuma T. (2011). Characterization of a novel β-L-Arabinofuranosidase in Bifidobacterium longum: functional elucidation of A DUF1680 family member. J Biol Chem. 2011;286(44):38079-38085. DOI:10.1074/jbc.M111.248690 | PubMed ID:21914802 [Fujita2011B]