CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Glycoside Hydrolase Family 172"

From CAZypedia
Jump to navigation Jump to search
Line 29: Line 29:
  
 
== Substrate specificities ==
 
== Substrate specificities ==
Glycoside hydrolase family 172 (GH172) includes α-D-arabinofuranosidases and α-D-fructofuranosidases. This family was established following the discovery of αFFase1 from ''Bifidobacterium dentium'' by Kashima et al. in 2021 <cite>Kashima2021</cite>. αFFase1 hydrolyzes the alkylated glycosides Me-α-D-Ara''f'' and Me-α-D-Fru''f''. In nature, it catalyzes the dehydrating condensation reaction of inulobiose (β-D-Fru''f''-(2→1)-α-D-Fru''f'') to difructose dianhydride I (DFA I, α-D-Fru''f''-1,2′:2,1′-β-D-Fru''f''). The dehydrating condensation reaction reaches equilibrium when the ratio of DFA and inulobiose is 9:1. αFFase1 is less specific for D-Fru at the non-reducing end and is able to catalyze the dehydrating condensation of β-D-Fru''p''-(2→1)-α-D-Fru''f'' to diheterolevulosan II (DHL II, α-D-Fru''p''-1,2′:2,1′-β-D-Fru''f''). Physiologically, it is believed that after degradation of DFA I to inulobiose, inulobiose is degraded to D-Fru by [[Glycoside Hydrolase Family 32]] β-D-fructofuranosidase, and then the produced monosaccharides are metabolized by the microorganism. DFA I is an oligosaccharide found in caramel, and since the degradation system of DFA I by bifidobacteria has been clarified, DFA I has attracted a certain attention in the food industry.
+
Glycoside hydrolase family 172 (GH172) includes α-D-arabinofuranosidases and α-D-fructofuranosidases. This family was established following the discovery of αFFase1 from ''Bifidobacterium dentium'' by Kashima et al. in 2021 <cite>Kashima2021</cite>. αFFase1 hydrolyzes the alkylated glycosides Me-α-D-Ara''f'' and Me-α-D-Fru''f''. In nature, it catalyzes the dehydrating condensation reaction of inulobiose (β-D-Fru''f''-(2→1)-α-D-Fru''f'') to difructose dianhydride I (DFA I, α-D-Fru''f''-1,2′:2,1′-β-D-Fru''f''). The dehydrating condensation reaction reaches equilibrium when the ratio of DFA and inulobiose is 9:1. αFFase1 is less specific for D-Fru at the non-reducing end and is able to catalyze the dehydrating condensation of β-D-Fru''p''-(2→1)-α-D-Fru''f'' to diheterolevulosan II (DHL II, α-D-Fru''p''-1,2′:2,1′-β-D-Fru''f''). Physiologically, it is believed that after degradation of DFA I to inulobiose, inulobiose is degraded to D-Fru by [https://www.cazypedia.org/index.php/Glycoside_Hydrolase_Family_32 GH32] β-D-fructofuranosidase, and then the produced monosaccharides are metabolized by the microorganism. DFA I is an oligosaccharide found in caramel, and since the degradation system of DFA I by bifidobacteria has been clarified, DFA I has attracted a certain attention in the food industry.
  
 
Also, some GH172 enzymes which physiologically functions as α-D-arabinofuranosidase, was reported in 2023 by Al-Jourani et al. (DgGH172a, DgGH172b, DgGH172c <cite>Al-Jourani2023</cite>) and Shimokawa et al. (ExoMA1 <cite>Shimokawa2023</cite>). In particular, ExoMA1 was compared in detail with αFFase1, and it was found that its α-D-fructofuranosidase activity is extremely weak. These enzymes are believed to be involved in the degradation system of d-arabinan in the cell walls of Mycobacteria and other acid-fast bacteria, and are expected to be applied to the development of therapeutic, preventive, and diagnostic agents for infectious diseases.
 
Also, some GH172 enzymes which physiologically functions as α-D-arabinofuranosidase, was reported in 2023 by Al-Jourani et al. (DgGH172a, DgGH172b, DgGH172c <cite>Al-Jourani2023</cite>) and Shimokawa et al. (ExoMA1 <cite>Shimokawa2023</cite>). In particular, ExoMA1 was compared in detail with αFFase1, and it was found that its α-D-fructofuranosidase activity is extremely weak. These enzymes are believed to be involved in the degradation system of d-arabinan in the cell walls of Mycobacteria and other acid-fast bacteria, and are expected to be applied to the development of therapeutic, preventive, and diagnostic agents for infectious diseases.
Authors may get an idea of what to put in each field from ''Curator Approved'' [[Glycoside Hydrolase Families]]. ''(TIP: Right click with your mouse and open this link in a new browser window...)''
 
  
In the meantime, please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>.
+
== Kinetics and Mechanism ==
 +
As of 2023, all of the enzymes reported in GH172 catalyze reactions by an anomer-[https://www.cazypedia.org/index.php/Glycoside_hydrolases#Mechanistic_classification retaining] mechanism. When ''p''NP-D-Ara''f'' is hydrolyzed by αFFase1 <cite>Kashima2021</cite> or ExoMA1 <cite>Shimokawa2023</cite>, the initial product was identified by <sup>1</sup>H NMR to have the same anomeric conformation as the substrate. In addition, when ''p''NP-α-D-Ara''f'' was enzymatically treated in the presence of organic solvents, transglycosylation products were detected by TLC. These are characteristic to GH with an anomer-retaining mechanism, and therefore, both enzymes are considered to have such kind of mechanism. Enzyme kinetic experiments with this substrate were first reported for αFFase1, with ''K''<sub>m</sub> and ''k''<sub>cat</sub> values of 2.71 ± 0.21 mM and 127.5 ± 4.0 s<sup>-1</sup>, respectively; kinetic constants for ExoMA1 were comparable.
 +
 
 +
A similar reaction mechanism is employed in the dehydrating condensation reaction of inulobiose to DFA I by αFFase1. Specifically, the reaction proceeds as follows ('''Figure 1''').
 +
 
 +
(i) The reducing end sugar of inulobiose changes its furanose/pyranose and α/β forms in the internal cavity of αFFase1 as well as in solution because of mutarotation.
 +
 
 +
(ii) The active site of αFFase1 selectively accommodates the α-furanose form in the −1 subsite. The +1 subsite can also accommodate the pyranose moiety of Frupβ2,1Fru. The Glu270 is located at an appropriate position for proton donation (general acid catalysis) to the O2 hydroxy group of α-Fruf at the −1 subsite, and Glu291 is placed at a position working as a nucleophile to the anomeric carbon (C2). After this step, the O2 hydroxy group is released from the substrate as a water molecule.
 +
 
 +
(iii) Rotations of the glycosidic bond and the C1–C2 bond of the +1-subsite sugar are required for the intramolecular transfer reaction to occur.
 +
 
 +
(iv) When the C1 hydroxy group of fructose at the +1 subsite is appropriately positioned for proton acceptance (general base catalysis) by Glu270, deglycosylation of Glu291 is facilitated.
  
== Kinetics and Mechanism ==
+
(v) After the reaction at the active site, DFA I is released through the channel to the inner cavity of the hexamer of αFFase1.
Content is to be added here.
 
  
 +
The opposite reaction from DFA I (v) to inulobiose (i) is expected to be similar to the standard retaining reaction mechanism of GHs. The ''k''<sub>cat</sub>/''K''<sub>m</sub> were 0.813 ± 0.016 mM<sup>-1</sup>.s<sup>-1</sup> and 0.0378 ± 0.0032 mM<sup>-1</sup>.s<sup>-1</sup> for inulobiose dehydration and DFA I hydrolysis, respectively.
 
== Catalytic Residues ==
 
== Catalytic Residues ==
 +
 
Content is to be added here.
 
Content is to be added here.
  

Revision as of 07:07, 20 September 2023

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH172
Clan None
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/GH172.html


Substrate specificities

Glycoside hydrolase family 172 (GH172) includes α-D-arabinofuranosidases and α-D-fructofuranosidases. This family was established following the discovery of αFFase1 from Bifidobacterium dentium by Kashima et al. in 2021 [1]. αFFase1 hydrolyzes the alkylated glycosides Me-α-D-Araf and Me-α-D-Fruf. In nature, it catalyzes the dehydrating condensation reaction of inulobiose (β-D-Fruf-(2→1)-α-D-Fruf) to difructose dianhydride I (DFA I, α-D-Fruf-1,2′:2,1′-β-D-Fruf). The dehydrating condensation reaction reaches equilibrium when the ratio of DFA and inulobiose is 9:1. αFFase1 is less specific for D-Fru at the non-reducing end and is able to catalyze the dehydrating condensation of β-D-Frup-(2→1)-α-D-Fruf to diheterolevulosan II (DHL II, α-D-Frup-1,2′:2,1′-β-D-Fruf). Physiologically, it is believed that after degradation of DFA I to inulobiose, inulobiose is degraded to D-Fru by GH32 β-D-fructofuranosidase, and then the produced monosaccharides are metabolized by the microorganism. DFA I is an oligosaccharide found in caramel, and since the degradation system of DFA I by bifidobacteria has been clarified, DFA I has attracted a certain attention in the food industry.

Also, some GH172 enzymes which physiologically functions as α-D-arabinofuranosidase, was reported in 2023 by Al-Jourani et al. (DgGH172a, DgGH172b, DgGH172c [2]) and Shimokawa et al. (ExoMA1 [3]). In particular, ExoMA1 was compared in detail with αFFase1, and it was found that its α-D-fructofuranosidase activity is extremely weak. These enzymes are believed to be involved in the degradation system of d-arabinan in the cell walls of Mycobacteria and other acid-fast bacteria, and are expected to be applied to the development of therapeutic, preventive, and diagnostic agents for infectious diseases.

Kinetics and Mechanism

As of 2023, all of the enzymes reported in GH172 catalyze reactions by an anomer-retaining mechanism. When pNP-D-Araf is hydrolyzed by αFFase1 [1] or ExoMA1 [3], the initial product was identified by 1H NMR to have the same anomeric conformation as the substrate. In addition, when pNP-α-D-Araf was enzymatically treated in the presence of organic solvents, transglycosylation products were detected by TLC. These are characteristic to GH with an anomer-retaining mechanism, and therefore, both enzymes are considered to have such kind of mechanism. Enzyme kinetic experiments with this substrate were first reported for αFFase1, with Km and kcat values of 2.71 ± 0.21 mM and 127.5 ± 4.0 s-1, respectively; kinetic constants for ExoMA1 were comparable.

A similar reaction mechanism is employed in the dehydrating condensation reaction of inulobiose to DFA I by αFFase1. Specifically, the reaction proceeds as follows (Figure 1).

(i) The reducing end sugar of inulobiose changes its furanose/pyranose and α/β forms in the internal cavity of αFFase1 as well as in solution because of mutarotation.

(ii) The active site of αFFase1 selectively accommodates the α-furanose form in the −1 subsite. The +1 subsite can also accommodate the pyranose moiety of Frupβ2,1Fru. The Glu270 is located at an appropriate position for proton donation (general acid catalysis) to the O2 hydroxy group of α-Fruf at the −1 subsite, and Glu291 is placed at a position working as a nucleophile to the anomeric carbon (C2). After this step, the O2 hydroxy group is released from the substrate as a water molecule.

(iii) Rotations of the glycosidic bond and the C1–C2 bond of the +1-subsite sugar are required for the intramolecular transfer reaction to occur.

(iv) When the C1 hydroxy group of fructose at the +1 subsite is appropriately positioned for proton acceptance (general base catalysis) by Glu270, deglycosylation of Glu291 is facilitated.

(v) After the reaction at the active site, DFA I is released through the channel to the inner cavity of the hexamer of αFFase1.

The opposite reaction from DFA I (v) to inulobiose (i) is expected to be similar to the standard retaining reaction mechanism of GHs. The kcat/Km were 0.813 ± 0.016 mM-1.s-1 and 0.0378 ± 0.0032 mM-1.s-1 for inulobiose dehydration and DFA I hydrolysis, respectively.

Catalytic Residues

Content is to be added here.

Three-dimensional structures

Content is to be added here.

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Kashima T, Okumura K, Ishiwata A, Kaieda M, Terada T, Arakawa T, Yamada C, Shimizu K, Tanaka K, Kitaoka M, Ito Y, Fujita K, and Fushinobu S. (2021). Identification of difructose dianhydride I synthase/hydrolase from an oral bacterium establishes a novel glycoside hydrolase family. J Biol Chem. 2021;297(5):101324. DOI:10.1016/j.jbc.2021.101324 | PubMed ID:34688653 [Kashima2021]
  2. Al-Jourani O, Benedict ST, Ross J, Layton AJ, van der Peet P, Marando VM, Bailey NP, Heunis T, Manion J, Mensitieri F, Franklin A, Abellon-Ruiz J, Oram SL, Parsons L, Cartmell A, Wright GSA, Baslé A, Trost M, Henrissat B, Munoz-Munoz J, Hirt RP, Kiessling LL, Lovering AL, Williams SJ, Lowe EC, and Moynihan PJ. (2023). Identification of D-arabinan-degrading enzymes in mycobacteria. Nat Commun. 2023;14(1):2233. DOI:10.1038/s41467-023-37839-5 | PubMed ID:37076525 [Al-Jourani2023]
  3. Shimokawa, M., Ishiwata, A., Kashima, T. et al. (2023) Identification and characterization of endo-α-, exo-α-, and exo-β-D-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria. Nature Communications 14, 5803. DOI:10.1038/s41467-023-41431-2

    [Shimokawa2023]
  4. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 | PubMed ID:18838391 [Cantarel2009]
  5. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]

All Medline abstracts: PubMed