CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Polysaccharide Lyase Family 2

From CAZypedia
Revision as of 07:56, 23 September 2013 by Wade Abbott (talk | contribs)
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Polysaccharide Lyase Family PL2
Mechanism β-elimination
Metal Cofactor Manganese
Active site residues known
CAZy DB link
http://www.cazy.org/PL2.html


Substrate specificities

Activity have been demonstrated on homogalacturonan (pectate) and (α1,4)-linked oligogalacturonides [1, 2].

Kinetics and Mechanism

α1,4 of pectate involves a Bronstead base for proton abstraction (i.e. arginine), a catalytic metal for acidification of the β-proton and oxyanion stabilization. PL2s have reported pH optimas in the range of 7.4 - 9.6 [1, 3], substantially lower than the pKa of arginine. These effects have been attributed to localized pKa effects within the active site.

Catalytic Residues

Content is to be added here.

Subfamilies

Subfamily 1, associated with endo-activity is preferentially active on homogalacturonan. Subfamily

Three-dimensional structures

The structure of the endolytic PL2A from Yersinia enterocolitica (YePL2A) is the only only PL2 structure to be reported [1]. Three different models for YePL2A have been deposited, including a native-form (2V8I, 1.50 Å), and a complex with trigalacturonate (2V8K, 2.1 Å) and a transitional metal (2V8J, 2.01 Å). Family 2 PLs adopt a rare α/α-7 barrel fold, with an active site cleft extending along the surface of the enzyme between two catalytic arms. The active site centre, consisting of the metal coordination pocket and catalytic arginines, is positioned at one end of the cleft. Substrate binding induces a conformational change and the arms close about the substrate.

Family Firsts

First catalytic activity
PelY from Yersinia pseudotuberculosis macerated cucumber [4].
First catalytic base identification
YePL2A (YE4069) Arg218 from Yersinia enterocolitica [1].
First catalytic divalent cation identification
DdPL2/PelW(Dda3937_03361) from Dickeya Dadantii 3937 (Previously Erwinia chrysanthemi3937)[2].
First 3-D structure
PL2A (YE4069) from Yersinia enterocolitica [1].

References

  1. Abbott DW and Boraston AB. (2007). A family 2 pectate lyase displays a rare fold and transition metal-assisted beta-elimination. J Biol Chem. 2007;282(48):35328-36. DOI:10.1074/jbc.M705511200 | PubMed ID:17881361 [Abbott2007]
  2. Shevchik VE, Condemine G, Robert-Baudouy J, and Hugouvieux-Cotte-Pattat N. (1999). The exopolygalacturonate lyase PelW and the oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwinia chrysanthemi 3937. J Bacteriol. 1999;181(13):3912-9. DOI:10.1128/JB.181.13.3912-3919.1999 | PubMed ID:10383957 [Shevchik1999]
  3. Abbott DW, Thomas D, Pluvinage B, and Boraston AB. (2013). An ancestral member of the polysaccharide lyase family 2 displays endolytic activity and magnesium dependence. Appl Biochem Biotechnol. 2013;171(7):1911-23. DOI:10.1007/s12010-013-0483-9 | PubMed ID:24013861 [Abbott2013]
  4. Manulis S, Kobayashi DY, and Keen NT. (1988). Molecular cloning and sequencing of a pectate lyase gene from Yersinia pseudotuberculosis. J Bacteriol. 1988;170(4):1825-30. DOI:10.1128/jb.170.4.1825-1830.1988 | PubMed ID:2832382 [Manulis1988]
  5. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochem. J. (BJ Classic Paper, online only). DOI: 10.1042/BJ20080382

    [DaviesSinnott2008]

All Medline abstracts: PubMed