CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Transglycosylases"

From CAZypedia
Jump to navigation Jump to search
Line 34: Line 34:
 
#Schuerwater2008 pmid=17468031
 
#Schuerwater2008 pmid=17468031
 
#Maarel2013 pmid=23465909
 
#Maarel2013 pmid=23465909
#Vocadlo2000 doi:10.1002/9783527618255.ch29
+
#Vocadlo2000 Vocadlo, D. J. and Withers, S. G., 'Glycosidase-Catalysed Oligosaccharide Synthesis', Ernst, B., Hart, G. W. and Sinaý, P. (2008) Glycosidase-Catalysed Oligosaccharide Synthesis, in Carbohydrates in Chemistry and Biology, Wiley-VCH Verlag GmbH, Weinheim, Germany. [http://dx.doi.org/10.1002/9783527618255.ch29]]
 
   
 
   
 
</biblio>
 
</biblio>
 
[[Category:Definitions and explanations]]
 
[[Category:Definitions and explanations]]

Revision as of 05:01, 5 May 2013

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Overview

Transglycosylases are a class of GH enzymes that can catalyze the transformation of one glycoside to another [1]. That is, these enzymes catalyze the substitution of a glycoside with another aglycon. Mechanistically, transglycosylases utilize the same mechanism as various retaining glycoside hydrolases. Thus, reaction of the nucleophile of a retaining glycoside hydrolase with a substrate gives a glycosyl-enzyme intermediate that can be intercepted either by water to give the hydrolysis product, or by another acceptor (often another carbohydrate alcohol), to give a new glycoside or oligosaccharide [2]. Alternatively, transglycosylation can occur by neighboring group participation, wherein a neighboring 2-acetamido group participates in the reaction to generate an oxazolinium ion intermediate, which can react with another acceptor other than water. Some transglycosidases possess substantial glycoside hydrolase activity, and some glycoside hydrolases possess transglycosylases activity. Indeed, in many cases it is unclear what the major role of an enzyme that possesses both activities may be. Transglycosylases are classified as glycoside hydrolases into various GH families on the basis of sequence similarity.


Transglycosylation.png
Generalized mechanism of a transglycosylase. Enzymatic cleavage of a substrate through a classical Koshland retaining mechanism results in formation of a glycosyl enzyme intermediate. This can partition to react with either water to cause hydrolysis (glycoside hydrolase activity) or to an alternative acceptor, often a sugar, to cause transglycosylation (transglycosylase activity).

Families

GH families with notable transglycosylase activity include:

  • GH2, for example LacZ β-galactosidase converts lactose to allolactose [3].
  • GH13, for example cyclodextran glucanotransferases that convert linear amylose to cyclodextrins [4]; glycogen debranching enzyme, which transfers three glucose residues from the four-residue glycogen branch to a nearby branch [5]; and trehalose synthase, which catalyzes the interconversion of maltose and trehalose [6].
  • GH16, for example xyloglucan endotransglycosylases, which cuts and rejoins xyloglucan chains in the plant cell wall [7].
  • GH31, for example, α-transglucosidases, which catalyze the transfer of individual glucosyl residues between α-(1→4)-glucans [8].
  • GH70, for example glucansucrases, which catalyse the synthesis of high molecular weight glucans, from sucrose [9].
  • GH77, for examples amylomaltase, which catalyzes the synthesis of maltodextrins from maltose [10].
  • GH23, GH102, GH103, and GH104 lytic transglycosylases, which convert peptidoglycan to 1,6-anhydrosugars [11].

References

  1. Vocadlo, D. J. and Withers, S. G., 'Glycosidase-Catalysed Oligosaccharide Synthesis', Ernst, B., Hart, G. W. and Sinaý, P. (2008) Glycosidase-Catalysed Oligosaccharide Synthesis, in Carbohydrates in Chemistry and Biology, Wiley-VCH Verlag GmbH, Weinheim, Germany. [1]]

    [Vocadlo2000]
  2. Crout DH and Vic G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol. 1998;2(1):98-111. DOI:10.1016/s1367-5931(98)80041-0 | PubMed ID:9667913 [Crout1998]
  3. Juers DH, Matthews BW, and Huber RE. (2012). LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 2012;21(12):1792-807. DOI:10.1002/pro.2165 | PubMed ID:23011886 [Juers2012]
  4. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 | PubMed ID:10331869 [Uitdehaag1999]
  5. Braun C, Lindhorst T, Madsen NB, and Withers SG. (1996). Identification of Asp 549 as the catalytic nucleophile of glycogen-debranching enzyme via trapping of the glycosyl-enzyme intermediate. Biochemistry. 1996;35(17):5458-63. DOI:10.1021/bi9526488 | PubMed ID:8611536 [Braun1996]
  6. Zhang R, Pan YT, He S, Lam M, Brayer GD, Elbein AD, and Withers SG. (2011). Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis. J Biol Chem. 2011;286(41):35601-35609. DOI:10.1074/jbc.M111.280362 | PubMed ID:21840994 [Zhang2011]
  7. Rose JK, Braam J, Fry SC, and Nishitani K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 2002;43(12):1421-35. DOI:10.1093/pcp/pcf171 | PubMed ID:12514239 [Rose2002]
  8. Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, and Brumer H. (2012). Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J Biol Chem. 2012;287(52):43288-99. DOI:10.1074/jbc.M112.416511 | PubMed ID:23132856 [Larsbrink2012]
  9. van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, and van Geel-Schutten IG. (2006). Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev. 2006;70(1):157-76. DOI:10.1128/MMBR.70.1.157-176.2006 | PubMed ID:16524921 [Hijum2006]
  10. van der Maarel MJ and Leemhuis H. (2013). Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydr Polym. 2013;93(1):116-21. DOI:10.1016/j.carbpol.2012.01.065 | PubMed ID:23465909 [Maarel2013]
  11. Scheurwater E, Reid CW, and Clarke AJ. (2008). Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol. 2008;40(4):586-91. DOI:10.1016/j.biocel.2007.03.018 | PubMed ID:17468031 [Schuerwater2008]

All Medline abstracts: PubMed