CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

User:Vincent Eijsink

From CAZypedia
Revision as of 11:27, 15 January 2018 by Vincent Eijsink (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Vincent Bilde.jpg

Vincent Eijsink obtained an MSc in Molecular Sciences (Biochemistry) from Wageningen University and completed his PhD at the Groningen Biomolecular Sciences and Biotechnology Institute under the supervision of Gerard Venema in 1991. During his Ph.D. studies, focusing on the engineering of protein stability, he was co-supervised by Herman Berendsen, Bauke Dijkstra and Gert Vriend and he had several short stays in the Bioinformatics group at EMBL. In 1993, he moved to what is now called the Norwegian University of Life Sciences (NMBU), in Ås, Norway, where he became a full professor of Biochemistry in 1997. Work on CAZymes started off with work on family 18 chitinases in the late 1990s, resulting in several papers on the structure and function of these enzymes [1, 2]. Current chitin-related work focuses on family 18 chitinases [3, 4, 5] and family 19 chitinases [6], whereas the group has a growing interest and activity in chitin deacetylases (CE family 4) [7, 8]. Recent research includes CAZyme discovery [9, 10, 11]. The Eijsink group is probably best known for the discovery of lytic polysaccharide monooxygenases (LPMOs) in 2010 [12] (AA family 10) after originally having detected chitinase boosting activity of what we now know is a chitin-active family AA10 LPMO in 2005 [13]. The group demonstrated AA10 activity on cellulose [14, 15] and was the first to describe activity of AA9 LPMOs (AA family 11) on soluble substrates [16] and beta-glucan hemicelluloses [17, 18]. Recent developments include studies of both AA9 and AA10, addressing topics such as substrate-binding [19], LPMO activation [20], and the involvement of hydrogen peroxide in LPMO action [21, 22].

References

  1. van Aalten DM, Synstad B, Brurberg MB, Hough E, Riise BW, Eijsink VG, and Wierenga RK. (2000). Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. Proc Natl Acad Sci U S A. 2000;97(11):5842-7. DOI:10.1073/pnas.97.11.5842 | PubMed ID:10823940 [VanAalten2000]
  2. van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, and Eijsink VG. (2001). Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A. 2001;98(16):8979-84. DOI:10.1073/pnas.151103798 | PubMed ID:11481469 [VanAalten2001]
  3. Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, and Eijsink VG. (2006). Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci U S A. 2006;103(48):18089-94. DOI:10.1073/pnas.0608909103 | PubMed ID:17116887 [Horn2006]
  4. Zakariassen H, Aam BB, Horn SJ, Vårum KM, Sørlie M, and Eijsink VG. (2009). Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem. 2009;284(16):10610-7. DOI:10.1074/jbc.M900092200 | PubMed ID:19244232 [Zakariassen2009]
  5. Vaaje-Kolstad G, Horn SJ, Sørlie M, and Eijsink VG. (2013). The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J. 2013;280(13):3028-49. DOI:10.1111/febs.12181 | PubMed ID:23398882 [Vaaje-Kolstad2013]
  6. Hoell IA, Dalhus B, Heggset EB, Aspmo SI, and Eijsink VG. (2006). Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes. FEBS J. 2006;273(21):4889-900. DOI:10.1111/j.1742-4658.2006.05487.x | PubMed ID:17010167 [Hoell2006]
  7. Liu Z, Gay LM, Tuveng TR, Agger JW, Westereng B, Mathiesen G, Horn SJ, Vaaje-Kolstad G, van Aalten DMF, and Eijsink VGH. (2017). Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Sci Rep. 2017;7(1):1746. DOI:10.1038/s41598-017-02043-1 | PubMed ID:28496100 [Liu2017]
  8. Tuveng TR, Rothweiler U, Udatha G, Vaaje-Kolstad G, Smalås A, and Eijsink VGH. (2017). Structure and function of a CE4 deacetylase isolated from a marine environment. PLoS One. 2017;12(11):e0187544. DOI:10.1371/journal.pone.0187544 | PubMed ID:29107991 [Tuveng2017]
  9. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, and Eijsink VG. (2012). Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One. 2012;7(6):e38571. DOI:10.1371/journal.pone.0038571 | PubMed ID:22701672 [Pope2012]
  10. Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, McBride MJ, and Pope PB. (2016). A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol Biofuels. 2016;9:260. DOI:10.1186/s13068-016-0674-z | PubMed ID:27933102 [Larsbrink2016]
  11. Tuveng TR, Arntzen MØ, Bengtsson O, Gardner JG, Vaaje-Kolstad G, and Eijsink VG. (2016). Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin. Proteomics. 2016;16(13):1904-14. DOI:10.1002/pmic.201500419 | PubMed ID:27169553 [Tuvengb2017]
  12. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, and Eijsink VG. (2010). An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219-22. DOI:10.1126/science.1192231 | PubMed ID:20929773 [Vaaje-Kolstad2010]
  13. Vaaje-Kolstad G, Horn SJ, van Aalten DM, Synstad B, and Eijsink VG. (2005). The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem. 2005;280(31):28492-7. DOI:10.1074/jbc.M504468200 | PubMed ID:15929981 [Vaaje-Kolstad2005]
  14. Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, and Eijsink VG. (2011). Cleavage of cellulose by a CBM33 protein. Protein Sci. 2011;20(9):1479-83. DOI:10.1002/pro.689 | PubMed ID:21748815 [Forsberg2011]
  15. Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, Vaaje-Kolstad G, and Eijsink VG. (2014). Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 2014;111(23):8446-51. DOI:10.1073/pnas.1402771111 | PubMed ID:24912171 [Forsberg2014]
  16. Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, and Horn SJ. (2014). A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem. 2014;289(5):2632-42. DOI:10.1074/jbc.M113.530196 | PubMed ID:24324265 [Isaksen2014]
  17. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, and Westereng B. (2014). Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A. 2014;111(17):6287-92. DOI:10.1073/pnas.1323629111 | PubMed ID:24733907 [Agger2014]
  18. Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, Røhr ÅK, Payne CM, Sørlie M, Sandgren M, and Eijsink VG. (2015). Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity. J Biol Chem. 2015;290(38):22955-69. DOI:10.1074/jbc.M115.660183 | PubMed ID:26178376 [Borisova2015]
  19. Courtade G, Wimmer R, Røhr ÅK, Preims M, Felice AK, Dimarogona M, Vaaje-Kolstad G, Sørlie M, Sandgren M, Ludwig R, Eijsink VG, and Aachmann FL. (2016). Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci U S A. 2016;113(21):5922-7. DOI:10.1073/pnas.1602566113 | PubMed ID:27152023 [Courtade2016]
  20. Loose JS, Forsberg Z, Kracher D, Scheiblbrandner S, Ludwig R, Eijsink VG, and Vaaje-Kolstad G. (2016). Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Sci. 2016;25(12):2175-2186. DOI:10.1002/pro.3043 | PubMed ID:27643617 [Loose2016]
  21. Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, and Eijsink VGH. (2017). Oxidative cleavage of polysaccharides by monocopper enzymes depends on H(2)O(2). Nat Chem Biol. 2017;13(10):1123-1128. DOI:10.1038/nchembio.2470 | PubMed ID:28846668 [Bissaro2017]
  22. Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, and Väljamäe P. (2018). Kinetics of H(2)O(2)-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J Biol Chem. 2018;293(2):523-531. DOI:10.1074/jbc.M117.817593 | PubMed ID:29138240 [Kuusk2018]

All Medline abstracts: PubMed