CAZypedia needs your input! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.

User:Marie-Katherin Zuehlke

From CAZypedia
Jump to navigation Jump to search
Portrait Marie Zuehlke klein.jpg

All my life I have been interested in environmental issues and thus studied (micro)biology. My PhD thesis was dedicated to the bacterial transformation of bisphenols, which are released from plastics and disrupt the endocrine system (laboratory Frieder Schauer). I focused on the structural elucidation of produced transformation products and their risk assessment. As a Post Doc, I have expanded this by the perspective of bacterial physiology and the proteins involved in degradation processes. Here, I am investigating the bacterial breakdown of algal sugars using proteomics and by detailed functional analysis of specific proteins. I am based at the University of Greifswald, Germany, and Station Biologique de Roscoff, France (teams Thomas Schweder and Mirjam Czjzek).

Please find me on ResearchGate.


  1. Beidler I, Robb CS, Vidal-Melgosa S, Zühlke MK, Bartosik D, Solanki V, Markert S, Becher D, Schweder T, and Hehemann JH. (2023). Marine bacteroidetes use a conserved enzymatic cascade to digest diatom β-mannan. ISME J. 2023;17(2):276-285. DOI:10.1038/s41396-022-01342-4 | PubMed ID:36411326 [Beidler2022]
  2. Dutschei T, Zühlke MK, Welsch N, Eisenack T, Hilkmann M, Krull J, Stühle C, Brott S, Dürwald A, Reisky L, Hehemann JH, Becher D, Schweder T, and Bornscheuer UT. (2022). Metabolic engineering enables Bacillus licheniformis to grow on the marine polysaccharide ulvan. Microb Cell Fact. 2022;21(1):207. DOI:10.1186/s12934-022-01931-0 | PubMed ID:36217189 [Dutschei2022]
  3. Dürwald A, Zühlke MK, Schlüter R, Gebbe R, Bartosik D, Unfried F, Becher D, and Schweder T. (2021). Reaching out in anticipation: bacterial membrane extensions represent a permanent investment in polysaccharide sensing and utilization. Environ Microbiol. 2021;23(6):3149-3163. DOI:10.1111/1462-2920.15537 | PubMed ID:33876569 [Duerwald2021]
  4. Zühlke MK, Schlüter R, Mikolasch A, Henning AK, Giersberg M, Lalk M, Kunze G, Schweder T, Urich T, and Schauer F. (2020). Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidusbasilensis - a structure-biotransformation relationship. Appl Microbiol Biotechnol. 2020;104(8):3569-3583. DOI:10.1007/s00253-020-10406-4 | PubMed ID:32125477 [Zuehlke2020]
  5. Reisky L, Préchoux A, Zühlke MK, Bäumgen M, Robb CS, Gerlach N, Roret T, Stanetty C, Larocque R, Michel G, Song T, Markert S, Unfried F, Mihovilovic MD, Trautwein-Schult A, Becher D, Schweder T, Bornscheuer UT, and Hehemann JH. (2019). A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol. 2019;15(8):803-812. DOI:10.1038/s41589-019-0311-9 | PubMed ID:31285597 [Reisky2019]
  6. Zühlke MK, Schlüter R, Mikolasch A, Zühlke D, Giersberg M, Schindler H, Henning AK, Frenzel H, Hammer E, Lalk M, Bornscheuer UT, Riedel K, Kunze G, and Schauer F. (2017). Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis. Appl Microbiol Biotechnol. 2017;101(9):3743-3758. DOI:10.1007/s00253-016-8061-z | PubMed ID:28050635 [Zuehlke2017]
  7. Zühlke MK, Schlüter R, Henning AK, Lipka M, Mikolasch A, Schumann P, Giersberg M, Kunze G, Schauer F (2016). A novel mechanism of conjugate formation of bisphenol A and its analogues by Bacillus amyloliquefaciens: Detoxification and reduction of estrogenicity of bisphenols. Int Biodeterior Biodegrad. 2016;109:165-173. DOI: 10.1016/j.ibiod.2016.01.019

    [Zuehlke2016]

All Medline abstracts: PubMed