CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Takatsugu Miyazaki"
Line 1: | Line 1: | ||
− | [[Image: | + | [[Image:Takatsugu_Miyazaki.png|200px|right]] |
Takatsugu Miyazaki is an Assistant Professor of [https://green.shizuoka.ac.jp/en/ Research Institute of Green Science and Technology] (RIGST) and [https://www.agr.shizuoka.ac.jp/en/ Department of Agriculture, Graduate School of Integrated Science and Technology] (GSST), at [https://www.shizuoka.ac.jp/english/ Shizuoka University]. He obtained his PhD under the supervision of [[User:Takashi Tonozuka|Takashi Tonozuka]] at Tokyo University of Agriculture and Technology. He is interested in structures and functions of CAZymes, especially glycoside hydrolases and glycosyltransferases from microorganisms and insects. He has contributed to the crystal structure determination of | Takatsugu Miyazaki is an Assistant Professor of [https://green.shizuoka.ac.jp/en/ Research Institute of Green Science and Technology] (RIGST) and [https://www.agr.shizuoka.ac.jp/en/ Department of Agriculture, Graduate School of Integrated Science and Technology] (GSST), at [https://www.shizuoka.ac.jp/english/ Shizuoka University]. He obtained his PhD under the supervision of [[User:Takashi Tonozuka|Takashi Tonozuka]] at Tokyo University of Agriculture and Technology. He is interested in structures and functions of CAZymes, especially glycoside hydrolases and glycosyltransferases from microorganisms and insects. He has contributed to the crystal structure determination of | ||
Revision as of 17:04, 8 January 2023
Takatsugu Miyazaki is an Assistant Professor of Research Institute of Green Science and Technology (RIGST) and Department of Agriculture, Graduate School of Integrated Science and Technology (GSST), at Shizuoka University. He obtained his PhD under the supervision of Takashi Tonozuka at Tokyo University of Agriculture and Technology. He is interested in structures and functions of CAZymes, especially glycoside hydrolases and glycosyltransferases from microorganisms and insects. He has contributed to the crystal structure determination of
- GH6 Coprinopsis cinerea cellobiohydrolase CcCel6C [1]
- GH6 Coprinopsis cinerea cellobiohydrolase CcCel6A [2]
- GH13_17 Bombyx mori sucrose hydrolase BmSUH [3]
- GH16 Microbulbifer thermotolerans β-agarase [4]
- GH27 Arthrobacter globiformis isomalto-dextranase [5]
- GH31 Pseudopedobacter saltans α-galactosidase [6]
- GH31 Enterococcus faecalis exo-acting protein-α-N-acetylgalactosaminidase [7, 8]
- GH31 Lactococcus lactis subsp. cremoris α-1,3-glucosidase [9]
- GH32 Bombyx mori β-fructofuranosidase BmSUC1 [10]
- GH49 Aspergillus brasiliensis isopullulanase (N-glycan-deficient variant) [11]
- GH62 Coprinopsis cinerea α-L-arabinofuranosidase CcAbf62A [12]
- GH63 Escherichia coli α-glycosidase YgjK (glycosynthase mutant) [13, 14]
- GH63 Thermus thermophillus mannosylglycerate hydrolase [15]
- GH65 Flavobacterium johnsoniae kojibiose hydrolase [16]
- GH68 Microbacterium saccharophilum β-fructofuranosidase [17] and its thermostabilized mutants [18]
- GH92 Enterococcus faecalis α-1,2-mannosidase (Michaelis complex) [19]
- GH131 Coprinopsis cinerea CcGH131A Family First [20]
- CBM94 C-terminal domains of Homo sapiens GT54 N-acetylglucosaminyltransferase IVa (GnT-IVa, MGAT4A) and Bombyx mori ortholog [21]
He also has contributed to identification and characterization of
- GH29 Bombyx mori α-L-fucosidase [22]
- GH31 Pedobacter heparinus α-galactosidase [6]
- GH31 Flavobacterium johnsoniae dextranase [23]
- GH31 Paenibacillus sp. 598K 6-α-glucosyltransferase [24]
- GH31 Bombyx mori exo-acting protein-α-N-acetylgalactosaminidase [25]
- GH31 Cordyceps militaris α-1,3-glucosidase [9]
- GH63 Aspergillus brasiliensis mannosyl-oligosaccharide glucosidase [26]
- GH65 Microbacterium dextranolyticum dextran α-1,2-debranching enzyme []
- GH66 Paenibacillus sp. 598K dextranase [27]
- GH99 Shewanella amazonensis endo-α-1,2-mannosidase [28]
- GT7 Bombyx mori β-1,4-N-acetylgalactosaminyltransferase [29]
- GT16 Homo sapiens β-1,2-N-acetylglucosaminyltransferase II recombinantly expressed in Bombyx mori [30]
- GT16 Bombyx mori β-1,2-N-acetylglucosaminyltransferase II [31]
- Liu Y, Yoshida M, Kurakata Y, Miyazaki T, Igarashi K, Samejima M, Fukuda K, Nishikawa A, and Tonozuka T. (2010). Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinerea. FEBS J. 2010;277(6):1532-42. DOI:10.1111/j.1742-4658.2010.07582.x |
- Tamura M, Miyazaki T, Tanaka Y, Yoshida M, Nishikawa A, and Tonozuka T. (2012). Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from Coprinopsis cinerea--a tweezer-like motion in the structure of CcCel6C. FEBS J. 2012;279(10):1871-82. DOI:10.1111/j.1742-4658.2012.08568.x |
- Miyazaki T and Park EY. (2020). Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 exo-α-glucosidases. J Biol Chem. 2020;295(26):8784-8797. DOI:10.1074/jbc.RA120.013595 |
- Takagi E, Hatada Y, Akita M, Ohta Y, Yokoi G, Miyazaki T, Nishikawa A, and Tonozuka T. (2015). Crystal structure of the catalytic domain of a GH16 β-agarase from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94. Biosci Biotechnol Biochem. 2015;79(4):625-32. DOI:10.1080/09168451.2014.988680 |
- Okazawa Y, Miyazaki T, Yokoi G, Ishizaki Y, Nishikawa A, and Tonozuka T. (2015). Crystal Structure and Mutational Analysis of Isomalto-dextranase, a Member of Glycoside Hydrolase Family 27. J Biol Chem. 2015;290(43):26339-49. DOI:10.1074/jbc.M115.680942 |
- Miyazaki T, Ishizaki Y, Ichikawa M, Nishikawa A, and Tonozuka T. (2015). Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31. Biochem J. 2015;469(1):145-58. DOI:10.1042/BJ20150261 |
- Miyazaki T and Park EY. (2020). Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31. FEBS Lett. 2020;594(14):2282-2293. DOI:10.1002/1873-3468.13804 |
- Miyazaki T, Ikegaya M, and Alonso-Gil S. (2022). Structural and mechanistic insights into the substrate specificity and hydrolysis of GH31 α-N-acetylgalactosaminidase. Biochimie. 2022;195:90-99. DOI:10.1016/j.biochi.2021.11.007 |
- Ikegaya M, Moriya T, Adachi N, Kawasaki M, Park EY, and Miyazaki T. (2022). Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. J Biol Chem. 2022;298(5):101827. DOI:10.1016/j.jbc.2022.101827 |
- Miyazaki T, Oba N, and Park EY. (2020). Structural insight into the substrate specificity of Bombyx mori β-fructofuranosidase belonging to the glycoside hydrolase family 32. Insect Biochem Mol Biol. 2020;127:103494. DOI:10.1016/j.ibmb.2020.103494 |
- Miyazaki T, Yashiro H, Nishikawa A, and Tonozuka T. (2015). The side chain of a glycosylated asparagine residue is important for the stability of isopullulanase. J Biochem. 2015;157(4):225-34. DOI:10.1093/jb/mvu065 |
- Tonozuka T, Tanaka Y, Okuyama S, Miyazaki T, Nishikawa A, and Yoshida M. (2017). Structure of the Catalytic Domain of α-L-Arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, Provides Insights into Structure-Function Relationships in Glycoside Hydrolase Family 62. Appl Biochem Biotechnol. 2017;181(2):511-525. DOI:10.1007/s12010-016-2227-0 |
- Miyazaki T, Ichikawa M, Yokoi G, Kitaoka M, Mori H, Kitano Y, Nishikawa A, and Tonozuka T. (2013). Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. FEBS J. 2013;280(18):4560-71. DOI:10.1111/febs.12424 |
- Miyazaki T, Nishikawa A, and Tonozuka T. (2016). Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. J Struct Biol. 2016;196(3):479-486. DOI:10.1016/j.jsb.2016.09.015 |
- Miyazaki T, Ichikawa M, Iino H, Nishikawa A, and Tonozuka T. (2015). Crystal structure and substrate-binding mode of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8. J Struct Biol. 2015;190(1):21-30. DOI:10.1016/j.jsb.2015.02.006 |
- Nakamura S, Nihira T, Kurata R, Nakai H, Funane K, Park EY, and Miyazaki T. (2021). Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. J Biol Chem. 2021;297(6):101366. DOI:10.1016/j.jbc.2021.101366 |
- Tonozuka T, Tamaki A, Yokoi G, Miyazaki T, Ichikawa M, Nishikawa A, Ohta Y, Hidaka Y, Katayama K, Hatada Y, Ito T, and Fujita K. (2012). Crystal structure of a lactosucrose-producing enzyme, Arthrobacter sp. K-1 β-fructofuranosidase. Enzyme Microb Technol. 2012;51(6-7):359-65. DOI:10.1016/j.enzmictec.2012.08.004 |
- Ohta Y, Hatada Y, Hidaka Y, Shimane Y, Usui K, Ito T, Fujita K, Yokoi G, Mori M, Sato S, Miyazaki T, Nishikawa A, and Tonozuka T. (2014). Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β-fructofuranosidase. Appl Microbiol Biotechnol. 2014;98(15):6667-77. DOI:10.1007/s00253-014-5645-3 |
- Alonso-Gil S, Parkan K, Kaminský J, Pohl R, and Miyazaki T. (2022). Unlocking the Hydrolytic Mechanism of GH92 α-1,2-Mannosidases: Computation Inspires the use of C-Glycosides as Michaelis Complex Mimics. Chemistry. 2022;28(14):e202200148. DOI:10.1002/chem.202200148 |
- Miyazaki T, Yoshida M, Tamura M, Tanaka Y, Umezawa K, Nishikawa A, and Tonozuka T. (2013). Crystal structure of the N-terminal domain of a glycoside hydrolase family 131 protein from Coprinopsis cinerea. FEBS Lett. 2013;587(14):2193-8. DOI:10.1016/j.febslet.2013.05.041 |
- Oka N, Mori S, Ikegaya M, Park EY, and Miyazaki T. (2022). Crystal structure and sugar-binding ability of the C-terminal domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family. Glycobiology. 2022;32(12):1153-1163. DOI:10.1093/glycob/cwac058 |
- Nakamura S, Miyazaki T, and Park EY. (2020). α-L-Fucosidase from Bombyx mori has broad substrate specificity and hydrolyzes core fucosylated N-glycans. Insect Biochem Mol Biol. 2020;124:103427. DOI:10.1016/j.ibmb.2020.103427 |
- Gozu Y, Ishizaki Y, Hosoyama Y, Miyazaki T, Nishikawa A, and Tonozuka T. (2016). A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Biosci Biotechnol Biochem. 2016;80(8):1562-7. DOI:10.1080/09168451.2016.1182852 |
- Ichinose H, Suzuki R, Miyazaki T, Kimura K, Momma M, Suzuki N, Fujimoto Z, Kimura A, and Funane K. (2017). Paenibacillus sp. 598K 6-α-glucosyltransferase is essential for cycloisomaltooligosaccharide synthesis from α-(1 → 4)-glucan. Appl Microbiol Biotechnol. 2017;101(10):4115-4128. DOI:10.1007/s00253-017-8174-z |
- Ikegaya M, Miyazaki T, and Park EY. (2021). Biochemical characterization of Bombyx mori α-N-acetylgalactosaminidase belonging to the glycoside hydrolase family 31. Insect Mol Biol. 2021;30(4):367-378. DOI:10.1111/imb.12701 |
- Miyazaki T, Matsumoto Y, Matsuda K, Kurakata Y, Matsuo I, Ito Y, Nishikawa A, and Tonozuka T. (2011). Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642. Glycoconj J. 2011;28(8-9):563-71. DOI:10.1007/s10719-011-9356-z |
- Mizushima D, Miyazaki T, Shiwa Y, Kimura K, Suzuki S, Fujita N, Yoshikawa H, Kimura A, Kitamura S, Hara H, and Funane K. (2019). A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides. Appl Microbiol Biotechnol. 2019;103(16):6581-6592. DOI:10.1007/s00253-019-09965-y |
- Matsuda K, Kurakata Y, Miyazaki T, Matsuo I, Ito Y, Nishikawa A, and Tonozuka T. (2011). Heterologous expression, purification, and characterization of an α-mannosidase belonging to glycoside hydrolase family 99 of Shewanella amazonensis. Biosci Biotechnol Biochem. 2011;75(4):797-9. DOI:10.1271/bbb.100874 |
- Miyazaki T, Miyashita R, Nakamura S, Ikegaya M, Kato T, and Park EY. (2019). Biochemical characterization and mutational analysis of silkworm Bombyx mori β-1,4-N-acetylgalactosaminyltransferase and insight into the substrate specificity of β-1,4-galactosyltransferase family enzymes. Insect Biochem Mol Biol. 2019;115:103254. DOI:10.1016/j.ibmb.2019.103254 |
- Miyazaki T, Kato T, and Park EY. (2018). Heterologous expression, purification and characterization of human β-1,2-N-acetylglucosaminyltransferase II using a silkworm-based Bombyx mori nucleopolyhedrovirus bacmid expression system. J Biosci Bioeng. 2018;126(1):15-22. DOI:10.1016/j.jbiosc.2018.01.011 |
- Miyazaki T, Miyashita R, Mori S, Kato T, and Park EY. (2019). Expression and characterization of silkworm Bombyx mori β-1,2-N-acetylglucosaminyltransferase II, a key enzyme for complex-type N-glycan biosynthesis. J Biosci Bioeng. 2019;127(3):273-280. DOI:10.1016/j.jbiosc.2018.08.014 |
- Mori M, Ichikawa M, Kiguchi Y, Miyazaki T, Hattori M, Nishikawa A, and Tonozuka T. (2016). A Surface Loop in the N-Terminal Domain of Pedobacter heparinus Heparin Lyase II is Important for Activity. J Appl Glycosci (1999). 2016;63(1):7-11. DOI:10.5458/jag.jag.JAG-2015_019 |