CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
 
(319 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''2 December 2016:''' ''A new CAZyme-specific journal:'' The journal ''[https://www.degruyter.com/view/j/amylase Amylase]'' has been recently launched under the editorial leadership of [[User:Stefan Janecek|Stefan Janecek]] and a number of other CAZypedians, including [[User:Bernard Henrissat|Bernard Henrissat]], [[User:Magali Remaud-Simeon|Magali Remaud-Simeon]], [[User:Birte Svensson|Birte Svensson]], [[User:Pedro Coutinho|Pedro Coutinho]], and [[User:Leila LoLeggio|Leila LoLeggio]]''[https://www.degruyter.com/view/j/amylase Amylase]'' is an open access journal that will focus on the biochemistry and biotechnology of starch hydrolases and related alpha-glucan-active enzymes, such as those from '''[[GH13]]''', '''[[GH70]]''', and '''[[GH77]]''' ([[Clan]] GH-H), as well as '''[[GH57]]''', '''[[GH119]]''', '''[[GH14]]''', '''[[GH15]]''', and '''[[GH31]]'''.  Visit the ''[https://www.degruyter.com/view/j/amylase Amylase]'' homepage for more information on the scope of the journal and how to submit manuscripts for publication.
+
'''31 October 2025:''' ''A spooktacular addition to the CAZypedia family!'' Come and say 'Boo!' to the frighteningly well written '''[[CBM13]]''' ''CAZypedia'' page.  The '''[[CBM13]]''' family is a '''[[Carbohydrate-binding_modules#Blurred Lines: CBMs, Lectins and Outliers|lectin-like CBM family]]'''. Its first characterized members were lectins, including the B chain from the highly toxic [https://en.wikipedia.org/wiki/Ricin ricin] toxin from ''Ricinus communis''.  This spine tingling read was authored by '''[[User:Scott Mazurkewich|Scott Mazurkewich]]''' and '''[[User:Lauren McKee|Lauren McKee]]''' who also acted as responsible curator. ''Come and visit the scariest of ''CAZypedia'' CBM pages, '''[[CBM13|here!]]'''..if you dare...''
 
----
 
----
'''29 November 2016:''' ''A small family of beta-xylosidases:''  The '''[[Glycoside Hydrolase Family 120]]''' page was completed and given [[Curator Approved]] status today by '''[[User:Spencer Williams|Spencer Williams]]'''.  '''[[Glycoside Hydrolase Family 120|GH120]]''' is currently a very small family, comprised of ca. 100 members originating exclusively from bacteria.  Following the initial identification of this family in 2011, enzymological and structural studies of two beta-xylosidases have revealed specifics of the catalytic mechanism ([[retaining]]) and an unusual beta-helix/beta-sandwich two-domain, tetrameric protein architecture.  Notably, the beta-helix domain resembles that of [[Polysaccharide Lyase Family 1]] and [[Glycoside Hydrolase Family 28]] members, and a complex structure with xylose revealed a large number of potential [[Surface Binding Site]]s.
+
'''29 July 2025:'''  ''[[CBM91]] is in the news!'' The xylan binding '''[[CBM91]]''' family ''CAZypedia'' page is up and runningAppended to mainly [[GH43]] xylanases this [[CBM91]] family drives interaction with substrate. The [[CBM91]] page was authored by '''[[User:Daichi Ito|Daichi Ito]]''' who also discovered the initial xylan-binding function which resulted in the creation of the [[CBM91]] CAZy family. ''Read up on this industrially interesting '''[[CBM91]]''' family '''[[CBM91|here]]'''.''
----
 
'''16 November 2016:''' ''A new plant glycanase with a lysozyme fold:'' '''[[User:Spencer Williams|Spencer Williams]]''' does it again, with the completion of the '''[[Glycoside Hydrolase Family 134]]''' page on a new family of [[inverting]] beta-(gluco)mannanases.  This small family emerged in 2015 with the biochemical characterization of an ''Aspergillus nidulans'' (fungal) member.  Recently the tertiary structure and detailed catalytic mechanism - including the reaction [[conformational itinerary]] - of a ''Streptomyces'' sp. (bacterial) '''[[Glycoside Hydrolase Family 134|GH134]]''' member has been resolved by [[User:Gideon Davies|Gideon Davies]], [[User:Spencer Williams|Spencer Williams]], and their collaborators and co-workersThis is only the second example of a [[glycoside hydrolase]] family that utilizes a lysozyme-like fold as a scaffold for the cleavge of a plant polysaccharide, as opposed to bacterial peptidoglycan; the first, a [[Glycoside Hydrolase Family 124]] cellulase characterized by [[User:Harry Gilbert|Harry Gilbert]] ''et al.'', also uses an [[inverting]] mechanism.
 
----
 
'''3 November 2016:''' ''New PDB links-out:'' For 3-D visualization of exemplar CAZymes and CBMs, we're trying a switch from [http://proteopedia.org/ Proteopedia] to the [https://doi.org/10.1093/nar/gkv402 NGL viewer] implementation at the RCSB Protein Data Bank.  We've made this switch site-wide across CAZypedia, and would like to [[Special:Contact|hear any feedback]] you might have. Here's an example for direct comparison: The seminal bacterial cellulose synthase complex [http://proteopedia.org/wiki/index.php/4hg6 in the JSMol viewer at Proteopedia] (including wiki page) and [http://www.rcsb.org/pdb/ngl/ngl.do?pdbid=4HG6 in the NGL viewer at the PDB] (other info available via the page tabs).
 
----
 
'''30 October 2016:''' ''Another X-module comes to light:'' Today '''[[User:Spencer Williams|Spencer Williams]]''' completed the '''[[Glycoside Hydrolase Family 135]]''' page, which describes the genesis of a new CAZy family from a small group of modules formerly known as "X307" in the [[User:Bernard Henrissat|CAZyModO]] classification. The single biochemically and structurally characterized GH135 member hydrolyzes the unique fungal exo-polysaccharide galactosaminogalactan, with crystallographic evidence suggesting that the enzyme acts as a alpha-galactosaminidase.  However, a number of key enzymological questions about this new family remain outstanding, and we look forward to future work in this direction of the CAZyme landscape.
 
----
 
'''3 September 2016:''' ''Galactosaminoglycan degradation:'' '''[[User:Spencer Williams|Spencer Williams]]''' has just completed a short entry on '''[[Glycoside Hydrolase Family 114]]''', a small family of bacterial and fungal sequences currently represented by a single characterized endo-alpha-1,4-polygalactosaminidase.  alpha-1,4-Polygalactosamine, also known as galactosaminoglycan, is produced as a secreted polysaccharide by select fungi, including Aspergilli.
 
----
 
'''27 February 2016:''' ''The sweet side of sulfur:'' [[Author]] '''[[User:Spencer Williams|Spencer Williams]]''' has updated the '''[[Glycoside Hydrolase Family 31]]''' page to reflect the recent discovery of the first dedicated sulfoquinovosidases (SQases), previously ‘hidden’ within this family. SQases cleave α-glycosides of sulfoquinovose (6-sulfoglucose), which represent a significant reservoir of organosulfur in the biosphere. ''See the [[GH31]] page to discover more of the hidden charms of this family.''
 
 
----
 
----

Latest revision as of 10:50, 3 November 2025

31 October 2025: A spooktacular addition to the CAZypedia family! Come and say 'Boo!' to the frighteningly well written CBM13 CAZypedia page. The CBM13 family is a lectin-like CBM family. Its first characterized members were lectins, including the B chain from the highly toxic ricin toxin from Ricinus communis. This spine tingling read was authored by Scott Mazurkewich and Lauren McKee who also acted as responsible curator. Come and visit the scariest of CAZypedia CBM pages, here!... if you dare...


29 July 2025: CBM91 is in the news! The xylan binding CBM91 family CAZypedia page is up and running. Appended to mainly GH43 xylanases this CBM91 family drives interaction with substrate. The CBM91 page was authored by Daichi Ito who also discovered the initial xylan-binding function which resulted in the creation of the CBM91 CAZy family. Read up on this industrially interesting CBM91 family here.