CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
 
(309 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''10 September 2017:''' ''Sussing out starch recognition in CBM58:'' We are excited to report that '''[[User:Nicole Koropatkin|Nicole Koropatkin]]''' has completed the '''[[Carbohydrate Binding Module Family 58]]''' page today.  [[CBM58]] constitutes a comparatively small family of CBMs found in bacteria in the phylum Bacteroidetes, including key members of the human gut microbiota such as ''Bacteroides thetaiotaomicron''.  Within these bacteria, [[CBM58]] modules are found inserted within the [[GH13]] catalytic module of SusG, the essential outer-membrane-bound amylase of the starch utilization system (sus).  [[User:Nicole Koropatkin|Nicole’s]] seminal structural biology has defined the family and provided insight into the recognition of amylose helices by [[CBM58]] members in SusG homologs.  ''Read more about this fascinating system [[Carbohydrate Binding Module Family 58|here]].''    
+
'''31 October 2025:''' ''A spooktacular addition to the CAZypedia family!'' Come and say 'Boo!' to the frighteningly well written '''[[CBM13]]''' ''CAZypedia'' page.  The '''[[CBM13]]''' family is a '''[[Carbohydrate-binding_modules#Blurred Lines: CBMs, Lectins and Outliers|lectin-like CBM family]]'''. Its first characterized members were lectins, including the B chain from the highly toxic [https://en.wikipedia.org/wiki/Ricin ricin] toxin from ''Ricinus communis''.  This spine tingling read was authored by '''[[User:Scott Mazurkewich|Scott Mazurkewich]]''' and '''[[User:Lauren McKee|Lauren McKee]]''' who also acted as responsible curator. ''Come and visit the scariest of ''CAZypedia'' CBM pages, '''[[CBM13|here!]]'''...  if you dare...''
 
----
 
----
'''10 April 2017:''' ''A classic GH family:'' The '''[[Glycoside Hydrolase Family 22]]''' page was completed today by '''[[User:Spencer Williams|Spencer Williams]]''', with editorial input from [[Responsible Curator]] '''[[User:David Vocadlo|David Vocadlo]]'''.  '''[[GH22]]''' contains the classic bacterial peptidoglycan hydrolase, hen egg-white lysozyme (HEWL), the first enzyme for which the three-dimensional structure was solved (reported in 1965).  Moreover, seminal enzyme-carbohydrate complex structures have made HEWL a paradigm for glycosidases that operate through the [[classical Koshland retaining mechanism]]. Although the nature of the reaction intermediate remained contentious for many years since the original proposal of an oxacarbenium ion-carboxylate pair, a definitive study by  [[User:David Vocadlo|Vocadlo]], [[User:Gideon Davies|Davies]], Laine, and [[User:Steve Withers|Withers]] resolved the covalent nature of the glycosyl-enzyme HEWL in 2001, thus bringing mechanistic understanding of this classic enzyme in concordance with other [[retaining]] GH families. The lysozyme fold of HEWL defines the archetype for other hexosaminidases (i.e. those of [[GH19]] and [[GH23]]) and the non-catalytic alpha-lactalbumins, and this fold notably has also been observed in recently emergent families of cellulases ([[GH124]]) and mannanases ([[GH134]]).  ''Find out more about this classic GH family [[Glycoside Hydrolase Family 22|here]]!''
+
'''29 July 2025:''' ''[[CBM91]] is in the news!'' The xylan binding '''[[CBM91]]''' family ''CAZypedia'' page is up and runningAppended to mainly [[GH43]] xylanases this [[CBM91]] family drives interaction with substrate. The [[CBM91]] page was authored by '''[[User:Daichi Ito|Daichi Ito]]''' who also discovered the initial xylan-binding function which resulted in the creation of the [[CBM91]] CAZy family. ''Read up on this industrially interesting '''[[CBM91]]''' family '''[[CBM91|here]]'''.''
 
----
 
----

Latest revision as of 10:50, 3 November 2025

31 October 2025: A spooktacular addition to the CAZypedia family! Come and say 'Boo!' to the frighteningly well written CBM13 CAZypedia page. The CBM13 family is a lectin-like CBM family. Its first characterized members were lectins, including the B chain from the highly toxic ricin toxin from Ricinus communis. This spine tingling read was authored by Scott Mazurkewich and Lauren McKee who also acted as responsible curator. Come and visit the scariest of CAZypedia CBM pages, here!... if you dare...


29 July 2025: CBM91 is in the news! The xylan binding CBM91 family CAZypedia page is up and running. Appended to mainly GH43 xylanases this CBM91 family drives interaction with substrate. The CBM91 page was authored by Daichi Ito who also discovered the initial xylan-binding function which resulted in the creation of the CBM91 CAZy family. Read up on this industrially interesting CBM91 family here.