CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date needs a touch-up? - you are welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute
Read more about CAZypedia here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.

Difference between revisions of "Carbohydrate Binding Module Family 8"

From CAZypedia
Jump to navigation Jump to search
(Created page with " <!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption --> {{UnderConstruc...")
 
(25 intermediate revisions by the same user not shown)
Line 18: Line 18:
  
 
== Ligand specificities ==
 
== Ligand specificities ==
Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.
+
These CBMs were originally called CBDVIII (family 8 cellulose-binding domains). DdCBM8, from the slime mold ''Dictyostelium discoideum''  CelA enzyme (270-6) binds insoluble forms of cellulose and xyloglucan, glucomannan, β-glucan, and hydroxyethyl cellulose (HEC), but not xylan<cite>Liberato2022</cite>. Binding was detected using affinity gel electrophoresis, ITC and intrinsic fluorescence microscopy<cite>Liberato2022</cite>. There is no evidence for binding to oligosaccharides <cite>Liberato2022</cite>. DdCBM8 appears to be broadly specific with both [[Carbohydrate-binding_modules#Types|type A]] and [[Carbohydrate-binding_modules#Types|type B]] CBM characteristics<cite>Liberato2022</cite>.  
 +
 
  
''Note: Here is an example of how to insert references in the text, together with the "biblio" section below:'' Please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>. CBMs, in particular, have been extensively reviewed <cite>Boraston2004 Hashimoto2006 Shoseyov2006 Guillen2010 Armenta2017</cite>.
 
  
 
== Structural Features ==
 
== Structural Features ==
 +
DdCBM8 is found C-terminal to the [[GH9]] endo-(1,4)-beta-D-glucanase (cellulase) catalytic module of the CelA enzyme (270–6) and connected via a Thr-Glu-Thr-Pro type repeat linker <cite>Ramalingam1992, Liberato2022</cite>.
 +
 +
DdCBM8 has a beta-sandwich fold. W572, W574, and Y600 form a planar surface, akin to [[Carbohydrate-binding_modules#Types|type A]] CBMs<cite>Liberato2022</cite>. These residues align with the [[CBM29]]-2 [{{PDBlink}}1GWM 1GWM] binding site <cite>Charnock2002</cite>.
 +
 +
 +
 +
 +
 
''Content in this section should include, in paragraph form, a description of:''
 
''Content in this section should include, in paragraph form, a description of:''
 
* '''Fold:''' Structural fold (beta trefoil, beta sandwich, etc.)
 
* '''Fold:''' Structural fold (beta trefoil, beta sandwich, etc.)
Line 29: Line 37:
  
 
== Functionalities ==  
 
== Functionalities ==  
 +
 +
CelA and CelB (a cellulose binding domain with no known cellulase activity<cite>Ramalingam1997</cite>) from ''Dictyostelium discoideum'' are predicted to be important for amoebae release from spores as transcriptomic experiments show that their mRNA levels are low in dormant spores, they rise during germination and then rapidly disappear after germination <cite>Ramalingam1992</cite>. Cellulase activities from differently sized cellulases are also shown to increase during spore germination <cite>Blume1991</cite>. It is suggested that CelB might improve the substrate accessibility for CelA due to their concomitant expression during germination <cite>Ramalingam1997</cite>.
 +
 +
 +
 +
 +
 
''Content in this section should include, in paragraph form, a description of:''
 
''Content in this section should include, in paragraph form, a description of:''
 
* '''Functional role of CBM:''' Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
 
* '''Functional role of CBM:''' Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
Line 36: Line 51:
 
== Family Firsts ==
 
== Family Firsts ==
 
;First Identified
 
;First Identified
:Insert archetype here, possibly including ''very brief'' synopsis.
+
:The first suggestion of binding to cellulose for the CBM8 family was determined by affinity gels in the absence of the CBM8 from CelA from ''Dictyostelium discoideum'' <cite>Ramalingam1992</cite>.  Clear binding studies were presented in <cite>Liberato2022</cite>.
 
;First Structural Characterization
 
;First Structural Characterization
:Insert archetype here, possibly including ''very brief'' synopsis.
+
:The first crystal structures are from DdCBM8, from the slime mold ''Dictyostelium discoideum'' <cite>Liberato2022</cite>, see [{{PDBlink}}7T7Y 7T7Y]  and [{{PDBlink}}7T7Z 7T7Z].
  
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
#Cantarel2009 pmid=18838391
+
#Tomme1998 pmid=9792516
#DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. ''The Biochemist'', vol. 30, no. 4., pp. 26-32. [https://doi.org/10.1042/BIO03004026 DOI:10.1042/BIO03004026].
+
#Blume1991 pmid=1869562
#Boraston2004 pmid=15214846
+
#Ramalingam1992 pmid=1447151
#Hashimoto2006 pmid=17131061
+
#Ramalingam1997 pmid=9334183
#Shoseyov2006 pmid=16760304
+
#Liberato2022 pmid=35378128
#Guillen2010 pmid=19908036
+
#Charnock2002 pmid=12391332
#Armenta2017 pmid=28547780
+
#Tomme1995 P. Tomme, R.A.J. Warren, R.C. Miller Jr., D.G. Kilburn, N.R. Gilkes, in: J.N. Saddler, M.H. Penner (Eds.), Enzymatic Degradation of Insoluble Carbohydrates, American Chemical Society Symposium Series, 1995, p. 142.
 +
 
 
</biblio>
 
</biblio>
  

Revision as of 08:03, 30 April 2024

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


CAZy DB link
http://www.cazy.org/CBM08.html

Ligand specificities

These CBMs were originally called CBDVIII (family 8 cellulose-binding domains). DdCBM8, from the slime mold Dictyostelium discoideum CelA enzyme (270-6) binds insoluble forms of cellulose and xyloglucan, glucomannan, β-glucan, and hydroxyethyl cellulose (HEC), but not xylan[1]. Binding was detected using affinity gel electrophoresis, ITC and intrinsic fluorescence microscopy[1]. There is no evidence for binding to oligosaccharides [1]. DdCBM8 appears to be broadly specific with both type A and type B CBM characteristics[1].


Structural Features

DdCBM8 is found C-terminal to the GH9 endo-(1,4)-beta-D-glucanase (cellulase) catalytic module of the CelA enzyme (270–6) and connected via a Thr-Glu-Thr-Pro type repeat linker [1, 2].

DdCBM8 has a beta-sandwich fold. W572, W574, and Y600 form a planar surface, akin to type A CBMs[1]. These residues align with the CBM29-2 1GWM binding site [3].



Content in this section should include, in paragraph form, a description of:

  • Fold: Structural fold (beta trefoil, beta sandwich, etc.)
  • Type: Include here Type A, B, or C and properties
  • Features of ligand binding: Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.

Functionalities

CelA and CelB (a cellulose binding domain with no known cellulase activity[4]) from Dictyostelium discoideum are predicted to be important for amoebae release from spores as transcriptomic experiments show that their mRNA levels are low in dormant spores, they rise during germination and then rapidly disappear after germination [2]. Cellulase activities from differently sized cellulases are also shown to increase during spore germination [5]. It is suggested that CelB might improve the substrate accessibility for CelA due to their concomitant expression during germination [4].



Content in this section should include, in paragraph form, a description of:

  • Functional role of CBM: Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
  • Most Common Associated Modules: 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
  • Novel Applications: Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.

Family Firsts

First Identified
The first suggestion of binding to cellulose for the CBM8 family was determined by affinity gels in the absence of the CBM8 from CelA from Dictyostelium discoideum [2]. Clear binding studies were presented in [1].
First Structural Characterization
The first crystal structures are from DdCBM8, from the slime mold Dictyostelium discoideum [1], see 7T7Y and 7T7Z.

References

  1. Liberato MV, Campos BM, Tomazetto G, Crouch LI, Garcia W, Zeri ACM, Bolam DN, and Squina FM. (2022). Unique properties of a Dictyostelium discoideum carbohydrate-binding module expand our understanding of CBM-ligand interactions. J Biol Chem. 2022;298(5):101891. DOI:10.1016/j.jbc.2022.101891 | PubMed ID:35378128 [Liberato2022]
  2. Ramalingam R, Blume JE, and Ennis HL. (1992). The Dictyostelium discoideum spore germination-specific cellulase is organized into functional domains. J Bacteriol. 1992;174(23):7834-7. DOI:10.1128/jb.174.23.7834-7837.1992 | PubMed ID:1447151 [Ramalingam1992]
  3. Charnock SJ, Bolam DN, Nurizzo D, Szabó L, McKie VA, Gilbert HJ, and Davies GJ. (2002). Promiscuity in ligand-binding: The three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello- and mannohexaose. Proc Natl Acad Sci U S A. 2002;99(22):14077-82. DOI:10.1073/pnas.212516199 | PubMed ID:12391332 [Charnock2002]
  4. Ramalingam R and Ennis HL. (1997). Characterization of the Dictyostelium discoideum cellulose-binding protein CelB and regulation of gene expression. J Biol Chem. 1997;272(42):26166-72. DOI:10.1074/jbc.272.42.26166 | PubMed ID:9334183 [Ramalingam1997]
  5. Blume JE and Ennis HL. (1991). A Dictyostelium discoideum cellulase is a member of a spore germination-specific gene family. J Biol Chem. 1991;266(23):15432-7. | Google Books | Open Library PubMed ID:1869562 [Blume1991]
  6. Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RA, and Kilburn DG. (1998). Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl. 1998;715(1):283-96. DOI:10.1016/s0378-4347(98)00053-x | PubMed ID:9792516 [Tomme1998]
  7. P. Tomme, R.A.J. Warren, R.C. Miller Jr., D.G. Kilburn, N.R. Gilkes, in: J.N. Saddler, M.H. Penner (Eds.), Enzymatic Degradation of Insoluble Carbohydrates, American Chemical Society Symposium Series, 1995, p. 142.

    [Tomme1995]

All Medline abstracts: PubMed