CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Glycoside Hydrolase Family 17"

From CAZypedia
Jump to navigation Jump to search
Line 46: Line 46:
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Active site labelling with epoxyalkyl-beta-D-oligoglucoside inhibitors identified Glu231 and Glu232 as the catalytic nucleophiles of the barley (1,3)- and (1,3;1,4)-β-d-glucan endohydrolases, respectively <cite>Chen1993</cite>, located at the bottom of, and about two-thirds of the way along the substrate binding cleft.  The catalytic acid/base residues were initially identified as Glu288 by chemical labelling procedures [2, 3], but Jenkins et al. [7] and Henrissat et al. [5] subsequently suggested that the catalytic acid/base was more likely to be Glu93. The 5-6 Å distance between Glu232 and Glu93 is more “typical” of retaining enzymes..
+
Active site labelling with epoxyalkyl-beta-D-oligoglucoside inhibitors identified Glu231 and Glu232 as the catalytic nucleophiles of the barley (1,3)- and (1,3;1,4)-beta-D-glucan endohydrolases, respectively <cite>Chen1993</cite>, located at the bottom of, and about two-thirds of the way along the substrate binding cleft.  The catalytic acid/base residue of (1,3;1,4)-beta-D-glucan endohydrolase was initially identified as Glu288 by chemical labelling procedures <cite>Chen1993 Chen1995b</cite>, but this assignment was subsequently revised and Glu93 was proposed based on primary and tertiary structural similarity of GH17 enzymes with clan GH-A glycosidases <cite>Jenkins Henrissat</cite>. The 5-6 Å distance between Glu232 and Glu93 is more typical of retaining enzymes.
  
  
Line 64: Line 64:
 
#Chen1995 Chen L, Sadek M, Stone BA, Brownlee RTC, Fincher GB and Høj PB (1995) Stereochemical course of glucan hydrolysis by barley 1,3- and 1,3;1,4-beta-glucan endohydrolases. Biochim. Biophys. Acta 1253, 112-116
 
#Chen1995 Chen L, Sadek M, Stone BA, Brownlee RTC, Fincher GB and Høj PB (1995) Stereochemical course of glucan hydrolysis by barley 1,3- and 1,3;1,4-beta-glucan endohydrolases. Biochim. Biophys. Acta 1253, 112-116
 
#Chen1993 Chen L, Fincher GB and Høj PB (1993) Evolution of polysaccharide hydrolase substrate specificity: catalytic amino acids are conserved in barley 1,3-1,4- and 1,3-beta-glucanases. J. Biol. Chem. 268, 13318-13326
 
#Chen1993 Chen L, Fincher GB and Høj PB (1993) Evolution of polysaccharide hydrolase substrate specificity: catalytic amino acids are conserved in barley 1,3-1,4- and 1,3-beta-glucanases. J. Biol. Chem. 268, 13318-13326
 +
#Chen1995b    Normal  0      21      false  false  false    FR  X-NONE  X-NONE                                      MicrosoftInternetExplorer4                                                                                                                                                                                                                                                                                                                            Chen L, Garrett TPJ, Fincher GB and Høj PB (1995) A tetrad of ionizable amino acids is important for catalysis in barley ß-glucanases.  J. Biol. Chem., 270, 8093-8101
 
#Comfort2007 pmid=17323919
 
#Comfort2007 pmid=17323919
 
#He1999 pmid=9312086
 
#He1999 pmid=9312086

Revision as of 14:48, 23 April 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GHnn
Clan GH-x
Mechanism retaining/inverting
Active site residues known/not known
CAZy DB link
http://www.cazy.org/fam/GHnn.html


Substrate specificities

The family GH17 glycoside hydrolases are clan GH-A enzymes from bacteria, fungi and plants, and include two major groups of enzymes with related but distinct substrate specificities, namely (1,3)-beta-D-glucan endohydrolases (EC 3.1.2.39) and (1,3;1,4)-beta-D-glucan endohydrolases (EC 3.1.2.73). A (1,3)-beta-D-glucan exohydrolase (EC 3.1.2.58) is also classified in this family. The family 17 enzymes have quite distinct amino acid sequences and 3D structures compared with the (1,3)-beta-D-glucan endohydrolases and (1,3;1,4)-beta-D-glucan endohydrolases that have similar substrate specificities but are classified in families GH16, GH55, GH64 and GH81.

The family GH17 (1,3)-beta-D-glucan endohydrolases hydrolyse internal (1,3)-beta-D-glucosidic linkages in polysaccharides, but usually require a region of contiguous unbranched, un-substituted (1,3)-beta-D-glucosyl residues for activity. The enzymes release (1,3)-beta-D-oligoglucosides of DP 2-5 as their major products. Because the (1,3)-beta-D-glucan endohydrolases require a region of contiguous unbranched, un-substituted (1,3)-beta-D-glucosyl residues for activity, they are unable to hydrolyse the single (1,3)-beta-D-glucosidic linkages in (1,3;1,4)-beta-D-glucans from the Poaceae, but they will hydrolyse (1,3)-beta-D-glucosidic linkages in fungal (1,3;1,6)-beta-D-glucans, provided an appropriate region of contiguous un-substituted (1,3)-beta-D-glucosyl residues is available. The family GH17 (1,3;1,4)-beta-D-glucan endohydrolases (EC 3.1.2.73) hydrolyse (1,4)-beta-D-glucosidic linkages, but only (1,3;1,4)-beta-D-glucans in which the glucosyl residue involved in the glycosidic linkage cleaved is substituted at the C(0)3 position, that is, where the (1,4)-beta-D-glucosidic linkages are located on the reducing end side of (1,3)-beta-D-glucosyl residues.

Reaction products released are mainly (1,3;1,4)-beta-D-tri- and tetrasaccharides (G4G3Gred and G4G4G3Gred), but they also release higher oligosaccharides of up to 10 or more contiguous (1,4)-beta-D-glucosyl residues with a single reducing terminal (1,3)-beta-D-glucosyl residue (e.g. G4G4G4G4G4G4G3Gred). These longer oligosaccharides originate from the longer regions of adjacent (1,4)-linkages that account for approximately 10% by weight of (1,3;1,4)-beta-D-glucans in cell walls of the Poaceae [1].



This is an example of how to make references to a journal article [2]. (See the References section below). Multiple references can go in the same place like this [2, 3]. You can even cite books using just the ISBN [4]. References that are not in PubMed can be typed in by hand [5].


Kinetics and Mechanism

The stereochemistry of the reaction has been determined experimentally and catalysis by GH17 enzymes occurs via a double displacement mechanism and the beta-anomeric configuration of the released oligosaccharide is retained [6]. Detailed kinetic analyses are available for three purified barley (1,3)-β-d-glucan endohydrolases and two barley (1,3;1,4)-beta-D-glucan endohydrolases [6].

Catalytic Residues

Active site labelling with epoxyalkyl-beta-D-oligoglucoside inhibitors identified Glu231 and Glu232 as the catalytic nucleophiles of the barley (1,3)- and (1,3;1,4)-beta-D-glucan endohydrolases, respectively [7], located at the bottom of, and about two-thirds of the way along the substrate binding cleft. The catalytic acid/base residue of (1,3;1,4)-beta-D-glucan endohydrolase was initially identified as Glu288 by chemical labelling procedures [7, 8], but this assignment was subsequently revised and Glu93 was proposed based on primary and tertiary structural similarity of GH17 enzymes with clan GH-A glycosidases [9, 10]. The 5-6 Å distance between Glu232 and Glu93 is more typical of retaining enzymes.


Three-dimensional structures

Content is to be added here.


Family Firsts

First sterochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [2].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [5].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [3].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [4].

References

  1. Woodward, J.R. and Fincher, G.B. (1982) Substrate specificities and kinetic properties of two (1→3),(1→4)-β-D-glucan endo-hydrolases from germinating barley (Hordeum vulgare). Carbohydr. Res. 106, 111-122

    [Woodward]
  2. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n | PubMed ID:17323919 [Comfort2007]
  3. He S and Withers SG. (1997). Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem. 1997;272(40):24864-7. DOI:10.1074/jbc.272.40.24864 | PubMed ID:9312086 [He1999]
  4. Robert V. Stick and Spencer J. Williams. (2009) Carbohydrates. Elsevier Science. [3]
  5. Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. DOI: 10.1021/cr00105a006

    [MikesClassic]
  6. Chen L, Sadek M, Stone BA, Brownlee RTC, Fincher GB and Høj PB (1995) Stereochemical course of glucan hydrolysis by barley 1,3- and 1,3;1,4-beta-glucan endohydrolases. Biochim. Biophys. Acta 1253, 112-116

    [Chen1995]
  7. Chen L, Fincher GB and Høj PB (1993) Evolution of polysaccharide hydrolase substrate specificity: catalytic amino acids are conserved in barley 1,3-1,4- and 1,3-beta-glucanases. J. Biol. Chem. 268, 13318-13326

    [Chen1993]
  8. Normal 0 21 false false false FR X-NONE X-NONE MicrosoftInternetExplorer4 Chen L, Garrett TPJ, Fincher GB and Høj PB (1995) A tetrad of ionizable amino acids is important for catalysis in barley ß-glucanases. J. Biol. Chem., 270, 8093-8101

    [Chen1995b]

All Medline abstracts: PubMed