CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Syn/anti lateral protonation"

From CAZypedia
Jump to navigation Jump to search
Line 1: Line 1:
 
<!-- CURATORS: Please delete the {{UnderConstruction}} tag below when the page is ready for wider public consumption -->
 
<!-- CURATORS: Please delete the {{UnderConstruction}} tag below when the page is ready for wider public consumption -->
 +
 
{{UnderConstruction}}
 
{{UnderConstruction}}
 +
 
* [[Author]]: ^^^Wim Nerinckx^^^
 
* [[Author]]: ^^^Wim Nerinckx^^^
 
* [[Responsible Curator]]:  ^^^Spencer Williams^^^
 
* [[Responsible Curator]]:  ^^^Spencer Williams^^^
 +
 
----
 
----
  
 
== Overview ==
 
== Overview ==
 +
 
This page will provide a table (and eventually a full lexicon article) on the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases.  The table below updates those found in the seminal paper on this concept by Heightman and Vasella <cite>HeightmanVasella1999</cite>, and the more recent summary by Nerinckx ''et al.'' <cite>Nerinckx2005</cite>.
 
This page will provide a table (and eventually a full lexicon article) on the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases.  The table below updates those found in the seminal paper on this concept by Heightman and Vasella <cite>HeightmanVasella1999</cite>, and the more recent summary by Nerinckx ''et al.'' <cite>Nerinckx2005</cite>.
  
 
== Table ==
 
== Table ==
This table can be re-sorted by clicking on the icons in the header (''javascript must be turned on in your browser'').  To reset the page to be sorted by GH family, click the ''page'' tab above the page title.  
+
 
 +
This table can be re-sorted by clicking on the icons in the header (''javascript must be turned on in your browser'').  To reset the page to be sorted by GH family, click the ''page'' tab above the page title.
 +
 
 
{| {{Prettytable}} class="sortable"
 
{| {{Prettytable}} class="sortable"
|-valign="top"
+
|- valign="top"
 
! '''Family'''
 
! '''Family'''
 
! '''Clan'''
 
! '''Clan'''
Line 208: Line 214:
 
| <cite>Mikami1999</cite>
 
| <cite>Mikami1999</cite>
 
|-
 
|-
 +
| [[GH15]]
 +
| L
 +
| (α/α)<sub>6</sub>
 +
| alpha
 +
| inverting
 +
| Glu179
 +
| ''syn''
 +
| Glu400
 +
| acarbose
 +
| ''Aspergillus awamori''
 +
| glucoamylase
 +
| 1gah
 +
| <cite>Aleshin1996</cite>
 +
|-
 +
| [[GH16]]
 +
| B
 +
| β jelly roll
 +
| beta
 +
| retaining
 +
| Glu152
 +
| ''syn''
 +
| Glu147
 +
| product
 +
| ''Zobellia galactanivorans''
 +
| beta-agarase A
 +
| 1urx
 +
| <cite>Allouch2004</cite>
 
|}
 
|}
  
 
== References ==
 
== References ==
 +
 
<biblio>
 
<biblio>
#HeightmanVasella1999 Heightman, T.D. and Vasella, A.T. (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. [http://www3.interscience.wiley.com/journal/55000581/abstract Article online].
+
 
#Nerinckx2005 pmid=15642336
+
# HeightmanVasella1999 Heightman, T.D. and Vasella, A.T. (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. [http://www3.interscience.wiley.com/journal/55000581/abstract Article online].
#Wiesmann1997 pmid=9223646
+
# Nerinckx2005 pmid=15642336
#Juers2001 pmid=11732897
+
# Wiesmann1997 pmid=9223646
#Hrmova2001 pmid=11709165
+
# Juers2001 pmid=11732897
#Varrot_A2003 pmid=12595701
+
# Hrmova2001 pmid=11709165
#Varrot_B2003 pmid=12744312
+
# Varrot_A2003 pmid=12595701
#Sulzenbacher1996 pmid=8952478
+
# Varrot_B2003 pmid=12744312
#Guerin2002 pmid=11884144
+
# Sulzenbacher1996 pmid=8952478
#Irwin1998 pmid=9537366
+
# Guerin2002 pmid=11884144
#Notenboom1998 pmid=9537990
+
# Irwin1998 pmid=9537366
#Sidhu1999 pmid=10220321
+
# Notenboom1998 pmid=9537990
#Sulzenbacher1999 pmid=10200171
+
# Sidhu1999 pmid=10220321
#Uitdehaag1999 pmid=10331869
+
# Sulzenbacher1999 pmid=10200171
#Mikami1999 pmid=10353816
+
# Uitdehaag1999 pmid=10331869
 +
# Mikami1999 pmid=10353816
 +
# Aleshin1996 pmid=8679589
 +
# Allouch2004 pmid=15062085
  
 
</biblio>
 
</biblio>
 
  
 
[[Category:Definitions and explanations]]
 
[[Category:Definitions and explanations]]

Revision as of 14:51, 12 November 2009


Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Overview

This page will provide a table (and eventually a full lexicon article) on the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and the more recent summary by Nerinckx et al. [2].

Table

This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the page tab above the page title.

Family Clan Structure fold Anomeric specificity Mechanism General acid syn/anti Nucleophile or General base Ligand Organism Enzyme PDB ID Primary reference
GH1 A (β/α)8 beta retaining Glu160 anti Glu375 product Lactococcus lactis 6-phospho-beta-galactosidase 4pbg [3]
GH2 A (β/α)8 beta retaining Glu461 anti Glu537 2-F-galactosyl Escherechia coli beta-galactosidase 1jz0 [4]
GH3 none (β/α)8 beta retaining Glu491 anti Asp285 2-F-glucosyl Hordeum vulgare exo-1,3-1,4-glucanase 1iew [5]
GH5 A (β/α)8 beta retaining Glu129 anti Glu228 2-F-glucosyl Bacillus agaradhaerans endo-1,4-glucanase 1h2j [6]
GH6 none (β/α)8 beta inverting Asp226 syn debated Glc-isofagomine Humicola insolens cellobiohydrolase 1ocn [7]
GH7 B β-jelly roll beta retaining Glu202 syn Glu197 thio-Glc5 Fusarium oxysporum endo-1,4-glucanase 1ovw [8]
GH8 M (α/α)6 beta inverting Glu95 anti Asp278 Michaelis Clostridium thermocellum endo-1,4-glucanase 1kwf [9]
GH9 none (α/α)6 beta inverting Glu424 syn Asp55,Asp58 product Thermomonospora fusca cellulase 3tf4,4tf4 [10]
GH10 A (β/α)8 beta retaining Glu127 anti Glu233 Xyl-2-F-xylosyl Cellulomonas fimi xylanase B (Cex) 2xyl [11]
GH11 C β-jelly roll beta retaining Glu172 syn Glu78 Xyl-2-F-xylosyl Bacillus circulans xylanase 1bvv [12]
GH12 C β-jelly roll beta retaining Glu203 syn Glu120 Glc2-2-F-glucosyl Streptomyces lividans endo-1,4-glucanase 2nlr [13]
GH13 H (β/α)8 alpha retaining Glu257 anti Asp229 Michaelis Bacillus circulans beta-cyclodextrin glucanotransferase 1ckx [14]
GH14 none (β/α)8 alpha inverting Glu172 syn Glu367 product Bacillus cereus beta-amylase 1b9z [15]
GH15 L (α/α)6 alpha inverting Glu179 syn Glu400 acarbose Aspergillus awamori glucoamylase 1gah [16]
GH16 B β jelly roll beta retaining Glu152 syn Glu147 product Zobellia galactanivorans beta-agarase A 1urx [17]

References

  1. Heightman, T.D. and Vasella, A.T. (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. Article online.

    [HeightmanVasella1999]
  2. Nerinckx W, Desmet T, Piens K, and Claeyssens M. (2005). An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Lett. 2005;579(2):302-12. DOI:10.1016/j.febslet.2004.12.021 | PubMed ID:15642336 [Nerinckx2005]
  3. Wiesmann C, Hengstenberg W, and Schulz GE. (1997). Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis. J Mol Biol. 1997;269(5):851-60. DOI:10.1006/jmbi.1997.1084 | PubMed ID:9223646 [Wiesmann1997]
  4. Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, and Matthews BW. (2001). A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry. 2001;40(49):14781-94. DOI:10.1021/bi011727i | PubMed ID:11732897 [Juers2001]
  5. Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 | PubMed ID:11709165 [Hrmova2001]
  6. Varrot A and Davies GJ. (2003). Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 3):447-52. DOI:10.1107/s0907444902023405 | PubMed ID:12595701 [Varrot_A2003]
  7. Varrot A, Macdonald J, Stick RV, Pell G, Gilbert HJ, and Davies GJ. (2003). Distortion of a cellobio-derived isofagomine highlights the potential conformational itinerary of inverting beta-glucosidases. Chem Commun (Camb). 2003(8):946-7. DOI:10.1039/b301592k | PubMed ID:12744312 [Varrot_B2003]
  8. Sulzenbacher G, Driguez H, Henrissat B, Schülein M, and Davies GJ. (1996). Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry. 1996;35(48):15280-7. DOI:10.1021/bi961946h | PubMed ID:8952478 [Sulzenbacher1996]
  9. Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 | PubMed ID:11884144 [Guerin2002]
  10. Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, and Wilson DB. (1998). Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol. 1998;180(7):1709-14. DOI:10.1128/JB.180.7.1709-1714.1998 | PubMed ID:9537366 [Irwin1998]
  11. Notenboom V, Birsan C, Warren RA, Withers SG, and Rose DR. (1998). Exploring the cellulose/xylan specificity of the beta-1,4-glycanase cex from Cellulomonas fimi through crystallography and mutation. Biochemistry. 1998;37(14):4751-8. DOI:10.1021/bi9729211 | PubMed ID:9537990 [Notenboom1998]
  12. Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, and Brayer GD. (1999). Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry. 1999;38(17):5346-54. DOI:10.1021/bi982946f | PubMed ID:10220321 [Sidhu1999]
  13. Sulzenbacher G, Mackenzie LF, Wilson KS, Withers SG, Dupont C, and Davies GJ. (1999). The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 A resolution. Biochemistry. 1999;38(15):4826-33. DOI:10.1021/bi982648i | PubMed ID:10200171 [Sulzenbacher1999]
  14. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 | PubMed ID:10331869 [Uitdehaag1999]
  15. Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, and Utsumi S. (1999). Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Biochemistry. 1999;38(22):7050-61. DOI:10.1021/bi9829377 | PubMed ID:10353816 [Mikami1999]
  16. Aleshin AE, Stoffer B, Firsov LM, Svensson B, and Honzatko RB. (1996). Crystallographic complexes of glucoamylase with maltooligosaccharide analogs: relationship of stereochemical distortions at the nonreducing end to the catalytic mechanism. Biochemistry. 1996;35(25):8319-28. DOI:10.1021/bi960321g | PubMed ID:8679589 [Aleshin1996]
  17. Allouch J, Helbert W, Henrissat B, and Czjzek M. (2004). Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure. 2004;12(4):623-32. DOI:10.1016/j.str.2004.02.020 | PubMed ID:15062085 [Allouch2004]

All Medline abstracts: PubMed