CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date needs a touch-up? - you are welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute
Read more about CAZypedia here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
 
(429 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''30 Apr 2012:''' ''A new cellulase fold:'' On April 27, '''[[User:Harry Gilbert|Harry Gilbert]]''' completed the '''[[Glycoside Hydrolase Family 124]]''' page here on ''CAZypedia.'' '''[[GH124]]''' is a comparatively new, but tiny, family in the CAZy classification.  This family is current comprised of only three members (2 identical sequences from 2 ''Clostridium spp.'' and 1 from ''Ruminococcus albus'') and was defined based on the demonstration of cellulase activity in one of the Clostridial members.  Remarkably, this enzyme was also shown to have a ''α''<sub>8</sub> superhelical fold, which has not been previously observed in cellulases, but is rather found in diverse lysozymes and lytic transglycosylases of [[GH23]] active on bacterial cell wall peptidoglycan.
+
'''2 May 2024:''' ''CBDs I to X... A major milestone!'' '''CBM families 1 to 10 are now complete!''' These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective ''CAZypedia'' pages: '''[[CBM1]], [[CBM2]], [[CBM3]], [[CBM4]], [[CBM5]], [[CBM6]], [[CBM7]], [[CBM8]], [[CBM9]], and [[CBM10]]'''.  
 
----
 
----
'''09 Mar 2012:''' ''β-glucuronidases!:'' Hot on the heels of their recent seminal structural and biochemical characterization of a '''[[Glycoside Hydrolase Family 79]]''' β-glucuronidase, '''[[User:Hitomi Ichinose|Hitomi Ichinose]]''' and '''[[User:Satoshi Kaneko|Satoshi Kaneko]]''' have just completed the '''[[GH79]]''' page in ''CAZypedia'''''[[GH79]]''' is currently a rather small family comprised of enzymes from bacteria, fungi, plants, and mammals, which remove glucuronic acid (GlcA) or 4-''O''-methyl glucuronic acid from a diversity of substrates, ranging from secondary metabolites to structural biomolecules such as proteoglycans and arabinogalactan proteins.  Click [[Glycoside Hydrolase Family 79|here]] to learn more about this interesting family!
+
'''11 February 2024:''' ''A "BLAST" from the past, with a fresh update.'' [[Author]] '''[[User:Eduardo Moreno Prieto|Eduardo Moreno Prieto]]''' composed a new page on '''[[Glycoside Hydrolase Family 119]]''',a family of bacterial amylases, which was [[Curator Approved]] by '''[[User:Stefan Janecek|Stefan Janecek]]''' and '''[[User:Bernard Henrissat|Bernard Henrissat]]''' today.  The first member of '''[[GH119]]''' was characterized in 2006, and through sequence analysis with [[GH57]] members, [[User:Stefan Janecek|Janeček]] and Kuchtová predicted the active-site residues in 2012.  Over a decade later, '''[[User:Eduardo Moreno Prieto|Eduardo]]''', '''[[User:Bernard Henrissat|Bernard]]''', and colleagues finally provided critical experimental support for these predictions.  ''Learn more about this history, and especially the relationship between '''[[GH119]]''' and '''[[GH57]]''', in CAZypedia.''
 
----
 
----
'''11 Jan 2012:''' ''New for the new year:'' ''CAZypedia'' is proud to report that our first new page of 2012, the '''[[Glycoside Hydrolase Family 99]]''' page, has been completed by '''[[User:Spencer Williams|Spencer Williams]]''' and given [[:Category:Curator approved|Curator Approved]] status today.  This page follows the recent publication of seminal structural and mechanistic analyses by a multi-investigator team including ''CAZypedia'' Curators '''[[User:Spencer Williams|Spencer Williams]]''' and '''[[User:Gideon Davies|Gideon Davies]]''', which suggests that endo-mannosidases of this family may use an unusual mechanism involving a 1,2-anhydro-β-mannopyranose  ("sugar epoxide") intermediate to effect the release of Glc<sub>1–3</sub>-1,3-α-Man oligosaccharides during N-glycan trimming.  '''[[GH99]]''' is a small, but nonetheless important family, whose members come from both higher eukaryotes, which employ these enzymes in protein-folding quality-control, and bacteria, which are likely to use their homologues for carbohydrate scavenging in niche enviroments such as the human gut.
+
'''3 February 2024:''' ''A new family of beta-1,2-glucan-cyclizing enzymes.'' A page on the (currently) newest GH family, '''[[Glycoside Hydrolase Family 189]]''', was completed today by [[Author]]s '''[[User:Tomoko Masaike|Tomoko Masaike]]''', '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''', and '''[[User:Nobukiyo Tanaka|Nobukiyo Tanaka]]''' ([[User:Masahiro Nakajima|Masahiro Nakajima]] is the [[Responsible Curator]]). '''[[GH189]]''' is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector moleculesThe discovery of '''[[GH189]]''' builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in [[GH144]] and [[GH162]], which share a common protein fold with '''[[GH189]]''', but have distinct mechansims. ''Check out the '''[[GH189]]''', [[GH144]], and [[GH162]] pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!''
----
 
''Also in the news:'' '''[[User:Spencer Williams|Spencer]]''' altered us to the fact that ''CAZypedia'' has clocked [[:Special:Statistics|'''one million page views''']] sometime recently.  We're not quite sure what to make of that, but it seems like a pretty neat achievement.  What is really interesting is that we are starting to see some dynamics in which pages are accessed most:  Newer pages, such as [[GH18]] (completed Oct. 2010), are becoming more popular than the very first ''CAZypedia'' page, [[GH1]] (completed May 2007).  And, some of the [[Lexicon]] pages, including those on the [[Cellulosome]] and [[Anomeric centre (alpha and beta)|anomeric configuration]] are right up there in the list.  If you like to keep score, here's a list of our most [[:Special:PopularPages|popular pages]].  Want to find out when a particular ''CAZypedia'' page was [[:Category:Curator approved|Curator Approved]]?  [[:CAZypedia:Assigned_pages|Click here]].
 
 
----
 
----

Latest revision as of 08:08, 2 May 2024

2 May 2024: CBDs I to X... A major milestone! CBM families 1 to 10 are now complete! These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective CAZypedia pages: CBM1, CBM2, CBM3, CBM4, CBM5, CBM6, CBM7, CBM8, CBM9, and CBM10.


11 February 2024: A "BLAST" from the past, with a fresh update. Author Eduardo Moreno Prieto composed a new page on Glycoside Hydrolase Family 119,a family of bacterial amylases, which was Curator Approved by Stefan Janecek and Bernard Henrissat today. The first member of GH119 was characterized in 2006, and through sequence analysis with GH57 members, Janeček and Kuchtová predicted the active-site residues in 2012. Over a decade later, Eduardo, Bernard, and colleagues finally provided critical experimental support for these predictions. Learn more about this history, and especially the relationship between GH119 and GH57, in CAZypedia.


3 February 2024: A new family of beta-1,2-glucan-cyclizing enzymes. A page on the (currently) newest GH family, Glycoside Hydrolase Family 189, was completed today by Authors Tomoko Masaike, Masahiro Nakajima, and Nobukiyo Tanaka (Masahiro Nakajima is the Responsible Curator). GH189 is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules. The discovery of GH189 builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in GH144 and GH162, which share a common protein fold with GH189, but have distinct mechansims. Check out the GH189, GH144, and GH162 pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!