CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date needs a touch-up? - you are welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute
Read more about CAZypedia here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
 
(434 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''11 Jan 2012:''' ''New for the new year:'' ''CAZypedia'' is proud to report that our first new page of 2012, the '''[[Glycoside Hydrolase Family 99]]''' page, has been completed by '''[[User:Spencer Williams|Spencer Williams]]''' and given [[:Category:Curator approved|Curator Approved]] status today.  The page follows the recent publication of seminal structural and mechanistic analyses by a multi-investigator team including ''CAZypedia'' Curators '''[[User:Spencer Williams|Spencer Williams]]''' and '''[[User:Gideon Davies|Gideon Davies]]''', which suggests that endo-mannosidases of this family may use an unusual mechanism involving a 1,2-anhydro-β-
+
'''2 May 2024:''' ''CBDs I to X... A major milestone!'' '''CBM families 1 to 10 are now complete!''' These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective ''CAZypedia'' pages: '''[[CBM1]], [[CBM2]], [[CBM3]], [[CBM4]], [[CBM5]], [[CBM6]], [[CBM7]], [[CBM8]], [[CBM9]], and [[CBM10]]'''.  
mannopyranose  ("sugar epoxide") intermediate to effect the release of Glc<sub>1–3</sub>-1,3-α-Man oligosaccharides during N-glycan trimming.  '''[[GH99]]''' is a small, but nonetheless important family, whose members come from both higher eukaryotes, which employ these enzymes in protein-folding quality-control, and bacteria, which are likely to use their homologues for carbohydrate scavenging in niche enviroments such as the human gut.
 
 
----
 
----
''Also in the news:'' '''[[User:Spencer Williams|Spencer]]''' altered us to the fact that ''CAZypedia'' has clocked [[:Special:Statistics|'''one million page views''']] sometime recentlyWe're not quite sure what to make of that, but it seems like a pretty neat achievement.  What is really interesting is that we are starting to see some dynamics in which pages are accessed most:  Newer pages, such as [[GH18]], are becoming more popular than the very first ''CAZypedia'' page, [[GH1]].  And, some of the [[Lexicon]] pages, including those on the [[Cellulosome]] and [[Anomeric centre (alpha and beta)|anomeric configuration]] are right up there in the listIf you like to keep score, here's a list of our most [[:Special:PopularPages]].
+
'''11 February 2024:''' ''A "BLAST" from the past, with a fresh update.'' [[Author]] '''[[User:Eduardo Moreno Prieto|Eduardo Moreno Prieto]]''' composed a new page on '''[[Glycoside Hydrolase Family 119]]''',a family of bacterial amylases, which was [[Curator Approved]] by '''[[User:Stefan Janecek|Stefan Janecek]]''' and '''[[User:Bernard Henrissat|Bernard Henrissat]]''' todayThe first member of '''[[GH119]]''' was characterized in 2006, and through sequence analysis with [[GH57]] members, [[User:Stefan Janecek|Janeček]] and Kuchtová predicted the active-site residues in 2012.  Over a decade later, '''[[User:Eduardo Moreno Prieto|Eduardo]]''', '''[[User:Bernard Henrissat|Bernard]]''', and colleagues finally provided critical experimental support for these predictions''Learn more about this history, and especially the relationship between '''[[GH119]]''' and '''[[GH57]]''', in CAZypedia.''
 
 
 
----
 
----
'''18 July 2011:''' ''Our second GH-I chitosanase page:'' '''[[User:Ryszard Brzezinski|Ryszard Brzezinski]]''' has recently completed and [[:Category:Curator approved|Curator Approved]] his second page on chitosanases, enzymes which act specifically on the de-acetylated form of chitin (the polysaccharide chitin is a widespread in Nature as a main component of insect bodies and crustacean shells)'''[[Glycoside Hydrolase Family 80]]''', a member of [[Clan]] GH-I together with [[GH24]] and [[GH46]], is a remarkably small family, which has thus far received only limited experimental attention.  We therefore look forward to the expansion of this page with structural and mechanistic data in the future. ''Coincidentally, the '''[[GH80]]''' page is our '''80th''' [[:Category:Curator approved|Curator Approved]] [[Glycoside Hydrolase Families|Glycoside Hydrolase Family]] page in CAZypedia!''
+
'''3 February 2024:''' ''A new family of beta-1,2-glucan-cyclizing enzymes.'' A page on the (currently) newest GH family, '''[[Glycoside Hydrolase Family 189]]''', was completed today by [[Author]]s '''[[User:Tomoko Masaike|Tomoko Masaike]]''', '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''', and '''[[User:Nobukiyo Tanaka|Nobukiyo Tanaka]]''' ([[User:Masahiro Nakajima|Masahiro Nakajima]] is the [[Responsible Curator]]). '''[[GH189]]''' is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules. The discovery of '''[[GH189]]''' builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in [[GH144]] and [[GH162]], which share a common protein fold with '''[[GH189]]''', but have distinct mechansims. ''Check out the '''[[GH189]]''', [[GH144]], and [[GH162]] pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!''
----
 
'''20 June 2011:''' ''More phosphorylases:'' On May 29, [[Author]] and [[Responsible Curator]] '''[[User:Hiroyuki Nakai|Hiroyuki Nakai]]'''  completed the '''[[Glycoside Hydrolase Family 65]]''' page. '''[[GH65]]''' is comprised of alpha-glycoside phosphorylases and alpha,alpha-trehalose hydrolases. Due to the readily reversible nature of phosphorolysis, '''[[GH65]]''' enzymes have been harnessed for glycoside synthesis, including recent work by '''[[User:Hiroyuki Nakai|Dr. Nakai]]'''. The completion of the '''[[GH65]]''' complements previously completed pages on the beta-glycoside phosphorylases of [[GH94]] and [[GH112]] in ''CAZypedia''.
 
----
 
'''12 May 2011:''' ''A new page on a new-ish family:'' [[Author]] and [[Responsible Curator]] '''[[User:Satoshi Kaneko|Satoshi Kaneko]]''' completed the '''[[Glycoside Hydrolase Family 115]]''' page today.  '''[[GH115]]''' contains microbial alpha-glucuronidases, which are involved the cleavage of D-glucuronic acid and 4-O-methyl-D-glucuronic acid sidechains from xylans.  Remarkably, '''[[GH115]]''' enzymes can release these monosaccharides from intact polymer chains, which is rather rare for exo-acting enzymes, and contrasts them with glucuronidases from '''[[GH67]]'''.  Although this regiospecific activity has been known since the last millenium, it was only in 2009 that these particular enzymes nucleated their own GH family.
 
 
----
 
----

Latest revision as of 08:08, 2 May 2024

2 May 2024: CBDs I to X... A major milestone! CBM families 1 to 10 are now complete! These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective CAZypedia pages: CBM1, CBM2, CBM3, CBM4, CBM5, CBM6, CBM7, CBM8, CBM9, and CBM10.


11 February 2024: A "BLAST" from the past, with a fresh update. Author Eduardo Moreno Prieto composed a new page on Glycoside Hydrolase Family 119,a family of bacterial amylases, which was Curator Approved by Stefan Janecek and Bernard Henrissat today. The first member of GH119 was characterized in 2006, and through sequence analysis with GH57 members, Janeček and Kuchtová predicted the active-site residues in 2012. Over a decade later, Eduardo, Bernard, and colleagues finally provided critical experimental support for these predictions. Learn more about this history, and especially the relationship between GH119 and GH57, in CAZypedia.


3 February 2024: A new family of beta-1,2-glucan-cyclizing enzymes. A page on the (currently) newest GH family, Glycoside Hydrolase Family 189, was completed today by Authors Tomoko Masaike, Masahiro Nakajima, and Nobukiyo Tanaka (Masahiro Nakajima is the Responsible Curator). GH189 is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules. The discovery of GH189 builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in GH144 and GH162, which share a common protein fold with GH189, but have distinct mechansims. Check out the GH189, GH144, and GH162 pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!