CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Template:News

From CAZypedia
Revision as of 06:41, 18 July 2011 by Harry Brumer (talk | contribs)
Jump to navigation Jump to search

18 July 2010: Our second GH-I chitosanase page: Ryszard Brzezinski has recently completed and Curator Approved his second page on chitosanases, enzymes which act specifically on the de-acetylated form of chitin (the polysaccharide chitin is a widespread in Nature as a main component of insect bodies and crustacean shells). Glycoside Hydrolase Family 80, a member of Clan GH-I together with GH24 and GH46, is a remarkably small family, which has thus far received only limited experimental attention. We therefore look forward to the expansion of this page with structural and mechanistic data in the future. Coincidentally, the GH80 page is our 80th Curator Approved Glycoside Hydrolase Family page in CAZypedia!


20 June 2011: More phosphorylases: On May 29, Author and Responsible Curator Hiroyuki Nakai completed the Glycoside Hydrolase Family 65 page. GH65 is comprised of alpha-glycoside phosphorylases and alpha,alpha-trehalose hydrolases. Due to the readily reversible nature of phosphorolysis, GH65 enzymes have been harnessed for glycoside synthesis, including recent work by Dr. Nakai. The completion of the GH65 complements previously completed pages on the beta-glycoside phosphorylases of GH94 and GH112 in CAZypedia.


12 May 2011: A new page on a new-ish family: Author and Responsible Curator Satoshi Kaneko completed the Glycoside Hydrolase Family 115 page today. GH115 contains microbial alpha-glucuronidases, which are involved the cleavage of D-glucuronic acid and 4-O-methyl-D-glucuronic acid sidechains from xylans. Remarkably, GH115 enzymes can release these monosaccharides from intact polymer chains, which is rather rare for exo-acting enzymes, and contrasts them with glucuronidases from GH67. Although this regiospecific activity has been known since the last millenium, it was only in 2009 that these particular enzymes nucleated their own GH family.