New to the CAZy classification? Read this first.
Want to learn more about CAZypedia? Read the CAZypedia 10th anniversary article in Glycobiology.

Glycoside Hydrolase Family 158

From CAZypedia
(Redirected from GH158)
Jump to: navigation, search
Approve icon-50px.png
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.

Glycoside Hydrolase Family GH158
Clan GH-A
Mechanism retaining
Active site residues known
CAZy DB link

Substrate specificities

Members of family 158 have been shown to display activity towards β(1,3)-glucans, making this the fourth clan GH-A glycoside hydrolase family known to contain β(1,3)-glucanase activity, alongside GH17, GH128, and GH148. The founding member of this family, Vvad_PD1638 from Victivallis vadensis, was shown to be active on carboxymethyl-curdlan in a high-throughput screen [1].

BuGH158 from the human gut bacterium Bacteroides uniformis was the first GH158 member to receive detailed characterization [2]. BuGH158 is an endo-β(1,3)-glucanase with high specificity towards laminarin from Laminaria digitata, a β(1,3)-glucan with single β(1,6)-glucose branches. BuGH158 is unable to tolerate more extensive branching as evidenced by poor activity towards other β(1,3)-glucans with longer, more frequent branches like laminarin from Eisenia bicyclis and yeast β-glucan [2]. The unbranched, linear β(1,3)-glucan curdlan was also not effectively hydrolyzed by BuGH158, due the poor solubility of this polysaccharide in water (Vvad_PD1638 described above was active on a curdlan that was chemically modified to increase water-solubility [1]).

Kinetics and Mechanism

As a family within clan GH-A, GH158 members were inferred to be retaining enzymes. Retention of anomeric stereochemistry was experimentally confirmed by 1H NMR on the product of hydrolysis of 2-chloro-4-nitrophenyl laminaribioside by BuGH158 [2]. Thus, GH158 members enzymes employ the classical Koshland double-displacement mechanism, which proceeds via a covalent glycosyl-enzyme intermediate.

Catalytic Residues

The catalytic nucleophile and general acid/base residues of BuGH158 were predicted by structural homology with other clan GH-A members to be E220 and E137. The catalytic importance of these residues was subsequently confirmed by site-directed mutagenesis [2]. This glutamate pair is located on loops immediately following β-strands 7 (nucleophile) and 4 (acid/base), consistent with all other clan GH-A enzymes.

Three-dimensional structures

Figure 1. Structure of BuGH158. (PDB ID 6PAL) The TIM barrel domain is shown in cyan, the Ig-like domain in slate, and the catalytic nucleophile and acid/base glutamates are shown as sticks.

The X-ray crystal structure of BuGH158 from Bacteroides uniformis, determined by multi-wavelength anomalous dispersion, represents the founding structural representative of this family [2]. The 1.8 Å-resolution structure revealed a two-domain architecture with an N-terminal (α/β)8 triose phosphate isomerase (TIM) barrel domain (the hallmark of clan GH-A structures) and a C-terminal eight-stranded immunoglobulin (Ig)-like domain that makes extensive contacts with the TIM barrel. A loop from the Ig-like domain extends over the TIM barrel to shape the active site cleft [2].

Family Firsts

First stereochemistry determination
Retention of product anomeric stereochemistry by BuGH158 from Bacteroides uniformis using 1H NMR [2].
First catalytic nucleophile identification
E220 in BuGH158 from Bacteroides uniformis by tertiary structural homology and kinetic analysis of a site-directed mutant [2].
First general acid/base residue identification
E137 in BuGH158 from Bacteroides uniformis by tertiary structural homology and kinetic analysis of a site-directed mutant [2].
First 3-D structure
BuGH158 from Bacteroides uniformis by X-ray crystallography [2].


  1. Helbert W, Poulet L, Drouillard S, Mathieu S, Loiodice M, Couturier M, Lombard V, Terrapon N, Turchetto J, Vincentelli R, and Henrissat B. (2019) Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci U S A. 116, 6063-6068. DOI:10.1073/pnas.1815791116 | PubMed ID:30850540 | HubMed [Helbert2019]
  2. Déjean G, Tamura K, Cabrera A, Jain N, Pudlo NA, Pereira G, Viborg AH, Van Petegem F, Martens EC, and Brumer H. (2020) Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides. mBio. 11. DOI:10.1128/mBio.00095-20 | PubMed ID:32265336 | HubMed [Dejean2020]
All Medline abstracts: PubMed | HubMed