CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "Carbohydrate Binding Module Family 48"

From CAZypedia
Jump to navigation Jump to search
(Created page with "<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption --> {{UnderConstruct...")
 
m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1")
 
(15 intermediate revisions by one other user not shown)
Line 1: Line 1:
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption -->
+
{{CuratorApproved}}
{{UnderConstruction}}
+
* [[Author]]s: [[User:Stefan Janecek|Stefan Janecek]] and [[User:Birte Svensson|Birte Svensson]]
* [[Author]]: ^^^Alicia Lammerts van Bueren^^^
+
* [[Responsible Curator]]s: [[User:Stefan Janecek|Stefan Janecek]] and [[User:Birte Svensson|Birte Svensson]]
* [[Responsible Curator]]: ^^^Alicia Lammerts van Bueren^^^
 
 
----
 
----
  
Line 17: Line 16:
  
 
== Ligand specificities ==
 
== Ligand specificities ==
Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.
+
Family CBM48 contains modules able to bind various linear and cyclic α-glucans related to and derived from starch and glycogen having both the α-1,4- and α-1,6-linkages including, e.g., glucose and maltopentaose <cite>Chaen2012</cite>, maltooligosaccharides <cite>Koay2010</cite>, maltoheptaose <cite>Meekins2014</cite>, β-cyclodextrin <cite>Polekhina2005</cite>, single α-1,6-branched glucosyl, maltosyl and maltoteatraosyl maltoheptaose <cite>Koay2010</cite> and single α-1,6-branched glucosyl β-cyclodextrin <cite>Mobbs2015</cite>.    
 
 
''Note: Here is an example of how to insert references in the text, together with the "biblio" section below:'' Please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>. CBMs, in particular, have been extensively reviewed <cite>Boraston2004 Hashimoto2006 Shoseyov2006 Guillen2010</cite>.
 
  
 
== Structural Features ==
 
== Structural Features ==
''Content in this section should include, in paragraph form, a description of:''
+
There is a number of family CBM48 structures solved mostly by X-ray crystallography <cite>Chaen2012 Koay2010 Meekins2014 Polekhina2005 Katsuya1998 Feese2000 Abad2002 Timmis2005 Leiros2006 Mikami2006 Amodeo2007 Woo2008 Gourlay2009 Turkenburg2009 Pal2010 Song2010 Vander-Kooi2010 Vester-Christensen2010 Noguchi2011 Moeller2012 Okazaki2012 Park2013 Xiao2013 Calabrese2014 Sim2014 Xu2014 Li2015 Moeller2015a Moeller2015b</cite>, but also by NMR <cite>Mobbs2015</cite>. The structure is a typical β-sandwich with one well-defined binding site <cite>Polekhina2005</cite>. As seen in the β1 subunit of the rat AMP-activated protein kinase (AMPK) <cite>Polekhina2005</cite>, the crucial role in binding is played by residues W100, F112, K126 and W133. As a complex exhibiting carbohydrate binding, the CBM48 has been determined only for β-subunits of mammalian AMPK <cite>Koay2010 Polekhina2005 Mobbs2015</cite>, and family [[GH13]] branching enzyme <cite>Chaen2012</cite> and starch excess4 (SEX4) protein <cite>Meekins2014</cite> both from plants. Notably, in complexes of the rice starch branching enzyme <cite>Chaen2012</cite> and the SEX4 protein <cite>Meekins2014</cite> with maltopentaose and maltoheptaose, respectively, the ligand interacts with both the CBM48 and the catalytic domain. In this light CBM48 possesses two binding sites including a canonical site 1 seen in the closely related [[CBM20]] and which in CBM48 is occupied by ligands that at the same time interact with the active site area of the catalytic domain. There are many homologous CBM48 structures present in several enzyme specificities from the α-amylase family [[GH13]] <cite>Janecek2011</cite>, but of these only the CBM48 from rice starch branching enzyme has been solved in complex with carbohydrate ligands <cite>Chaen2012</cite>.
* '''Fold:''' Structural fold (beta trefoil, beta sandwich, etc.)
 
* '''Type:''' Include here Type A, B, or C and properties
 
* '''Features of ligand binding:''' Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.
 
  
 
== Functionalities ==  
 
== Functionalities ==  
''Content in this section should include, in paragraph form, a description of:''
+
The CBM48 in amylolytic enzymes from the family [[GH13]] precedes the catalytic TIM-barrel. This is the case of isoamylase <cite>Katsuya1998 Sim2014</cite>, maltooligosyltrehalohydrolase <cite>Feese2000 Timmis2005 Leiros2006</cite>, branching enzyme <cite>Chaen2012 Abad2002 Pal2010 Noguchi2011 Palomo2009</cite>, debranching enzyme <cite>Woo2008 Song2010</cite>, pullulanase <cite>Mikami2006 Gourlay2009 Turkenburg2009 Xu2014</cite>, limit dextrinase <cite>Vester-Christensen2010 Moeller2012 Moeller2015a Moeller2015b</cite> and a bifunctional α-amylase/cyclomaltodextrinase <cite>Park2013</cite>. In the non-amylolytic SEX4 proteins from plants and green algae, the module is positioned C-terminally with respect to the catalytic glucan phosphatase domain <cite>Meekins2014 Vander-Kooi2010 Gentry2009</cite>. A special case is represented by mammalian AMPKs that possess the CBM48 within the β-subunits of its αβγ heterotrimer molecule <cite>Koay2010 Polekhina2005 Mobbs2015 Xiao2013 Calabrese2014 Li2015</cite>; the same applies for AMPK’s yeast homologue SNF1 <cite>Amodeo2007</cite>. A C-terminal position is also found for CBM48 in FLO6, a protein involved in starch biosynthesis <cite>Peng2014a</cite>. With regard to sequence/structure relationships and the way of carbohydrate binding, the modules from the family CBM48 are most closely related to those from the family [[CBM20]] <cite>Janecek2011</cite> and, in a wider sense, also to those from families [[CBM21]], [[CBM53]] <cite>Machovic2006a Christiansen2009</cite> and the recently established family [[CBM69]] <cite>Peng2014b</cite>.
* '''Functional role of CBM:''' Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
 
* '''Most Common Associated Modules:''' 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
 
* '''Novel Applications:'''  Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.
 
  
 
== Family Firsts ==
 
== Family Firsts ==
 
;First Identified
 
;First Identified
:Insert archetype here, possibly including ''very brief'' synopsis.
+
The family CBM48 was first referred to as (CBM20+CBM21)-related groups based on the in silico analysis of various proteins and taxa <cite>Machovic2006a</cite> and then defined within the CAZy database as an independent CBM family <cite>Machovic2008 Cantarel2009</cite>.
 
;First Structural Characterization
 
;First Structural Characterization
:Insert archetype here, possibly including ''very brief'' synopsis.
+
Based on current knowledge <cite>Janecek2011 Machovic2008 Cantarel2009</cite>, the first CBM48 structure without any carbohydrate bound was solved as the N-terminal domain of the isoamylase from Pseudomonas amyloderamosa <cite>Katsuya1998</cite>. The first CBM48 structure confirming its carbohydrate binding ability (a complex with β-cyclodextrin) was determined for the β1 subunit of the rat AMPK <cite>Polekhina2005</cite>, but it is of note that at that time the family CBM48 was not established <cite>Machovic2006b</cite>.  
  
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
 +
#Chaen2012 pmid=22771800
 +
#Koay2010 pmid=20637197
 +
#Meekins2014 pmid=24799671
 +
#Polekhina2005 pmid=16216577
 +
#Mobbs2015 pmid=25774984
 +
#Katsuya1998 pmid=9719642
 +
#Feese2000 pmid=10926520
 +
#Abad2002 pmid=12196524
 +
#Timmis2005 pmid=15784255
 +
#Leiros2006 pmid=16421442
 +
#Mikami2006 pmid=16650854
 +
#Amodeo2007 pmid=17851534
 +
#Woo2008 pmid=18703518
 +
#Gourlay2009 pmid=19329633
 +
#Turkenburg2009 pmid=19382205
 +
#Pal2010 pmid=20444687
 +
#Song2010 pmid=20187119
 +
#Vander-Kooi2010 pmid=20679247
 +
#Vester-Christensen2010 pmid=20863834
 +
#Noguchi2011 pmid=21493662
 +
#Moeller2012 pmid=22949184
 +
#Okazaki2012 pmid=22334583
 +
#Park2013 pmid=22902546
 +
#Xiao2013 pmid=24352254
 +
#Calabrese2014 pmid=25066137
 +
#Sim2014 pmid=24993830
 +
#Xu2014 pmid=24375572
 +
#Li2015 pmid=25412657
 +
#Moeller2015a pmid=25792743
 +
#Moeller2015b pmid=25562209
 +
#Janecek2011 pmid=22112614
 +
#Palomo2009 pmid=19139240
 +
#Gentry2009 pmid=19818631
 +
#Peng2014a pmid=24456533
 +
#Machovic2006a pmid=17084392
 +
#Christiansen2009 pmid=19682075
 +
#Peng2014b pmid=24613924
 +
#Machovic2008 Machovic M, and Janecek S. “Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48.” Biologia 2008; 63: 1057-68. ([http://dx.doi.org/10.2478/s11756-008-0162-4 DOI: 10.2478/s11756-008-0162-4])
 
#Cantarel2009 pmid=18838391
 
#Cantarel2009 pmid=18838391
#DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochem. J. (BJ Classic Paper, online only). [http://dx.doi.org/10.1042/BJ20080382 DOI: 10.1042/BJ20080382]
+
#Machovic2006b pmid=17013558     
#Boraston2004 pmid=15214846
 
#Hashimoto2006 pmid=17131061
 
#Shoseyov2006 pmid=16760304
 
#Guillen2010 pmid=19908036
 
 
</biblio>
 
</biblio>
  
 
[[Category:Carbohydrate Binding Module Families|CBM048]]
 
[[Category:Carbohydrate Binding Module Families|CBM048]]

Latest revision as of 13:15, 18 December 2021

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


CAZy DB link
https://www.cazy.org/CBM48.html

Ligand specificities

Family CBM48 contains modules able to bind various linear and cyclic α-glucans related to and derived from starch and glycogen having both the α-1,4- and α-1,6-linkages including, e.g., glucose and maltopentaose [1], maltooligosaccharides [2], maltoheptaose [3], β-cyclodextrin [4], single α-1,6-branched glucosyl, maltosyl and maltoteatraosyl maltoheptaose [2] and single α-1,6-branched glucosyl β-cyclodextrin [5].

Structural Features

There is a number of family CBM48 structures solved mostly by X-ray crystallography [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], but also by NMR [5]. The structure is a typical β-sandwich with one well-defined binding site [4]. As seen in the β1 subunit of the rat AMP-activated protein kinase (AMPK) [4], the crucial role in binding is played by residues W100, F112, K126 and W133. As a complex exhibiting carbohydrate binding, the CBM48 has been determined only for β-subunits of mammalian AMPK [2, 4, 5], and family GH13 branching enzyme [1] and starch excess4 (SEX4) protein [3] both from plants. Notably, in complexes of the rice starch branching enzyme [1] and the SEX4 protein [3] with maltopentaose and maltoheptaose, respectively, the ligand interacts with both the CBM48 and the catalytic domain. In this light CBM48 possesses two binding sites including a canonical site 1 seen in the closely related CBM20 and which in CBM48 is occupied by ligands that at the same time interact with the active site area of the catalytic domain. There are many homologous CBM48 structures present in several enzyme specificities from the α-amylase family GH13 [31], but of these only the CBM48 from rice starch branching enzyme has been solved in complex with carbohydrate ligands [1].

Functionalities

The CBM48 in amylolytic enzymes from the family GH13 precedes the catalytic TIM-barrel. This is the case of isoamylase [6, 26], maltooligosyltrehalohydrolase [7, 9, 10], branching enzyme [1, 8, 16, 20, 32], debranching enzyme [13, 17], pullulanase [11, 14, 15, 27], limit dextrinase [19, 21, 29, 30] and a bifunctional α-amylase/cyclomaltodextrinase [23]. In the non-amylolytic SEX4 proteins from plants and green algae, the module is positioned C-terminally with respect to the catalytic glucan phosphatase domain [3, 18, 33]. A special case is represented by mammalian AMPKs that possess the CBM48 within the β-subunits of its αβγ heterotrimer molecule [2, 4, 5, 24, 25, 28]; the same applies for AMPK’s yeast homologue SNF1 [12]. A C-terminal position is also found for CBM48 in FLO6, a protein involved in starch biosynthesis [34]. With regard to sequence/structure relationships and the way of carbohydrate binding, the modules from the family CBM48 are most closely related to those from the family CBM20 [31] and, in a wider sense, also to those from families CBM21, CBM53 [35, 36] and the recently established family CBM69 [37].

Family Firsts

First Identified

The family CBM48 was first referred to as (CBM20+CBM21)-related groups based on the in silico analysis of various proteins and taxa [35] and then defined within the CAZy database as an independent CBM family [38, 39].

First Structural Characterization

Based on current knowledge [31, 38, 39], the first CBM48 structure without any carbohydrate bound was solved as the N-terminal domain of the isoamylase from Pseudomonas amyloderamosa [6]. The first CBM48 structure confirming its carbohydrate binding ability (a complex with β-cyclodextrin) was determined for the β1 subunit of the rat AMPK [4], but it is of note that at that time the family CBM48 was not established [40].

References

Error fetching PMID 22771800:
Error fetching PMID 20637197:
Error fetching PMID 16216577:
Error fetching PMID 25774984:
Error fetching PMID 10926520:
Error fetching PMID 15784255:
Error fetching PMID 16421442:
Error fetching PMID 17851534:
Error fetching PMID 19329633:
Error fetching PMID 19382205:
Error fetching PMID 20444687:
Error fetching PMID 20187119:
Error fetching PMID 20679247:
Error fetching PMID 21493662:
Error fetching PMID 22949184:
Error fetching PMID 22334583:
Error fetching PMID 22902546:
Error fetching PMID 24352254:
Error fetching PMID 25066137:
Error fetching PMID 24993830:
Error fetching PMID 24375572:
Error fetching PMID 25412657:
Error fetching PMID 25792743:
Error fetching PMID 25562209:
Error fetching PMID 22112614:
Error fetching PMID 19139240:
Error fetching PMID 19818631:
Error fetching PMID 24456533:
Error fetching PMID 17084392:
Error fetching PMID 24613924:
  1. Error fetching PMID 22771800: [Chaen2012]
  2. Error fetching PMID 20637197: [Koay2010]
  3. Meekins DA, Raththagala M, Husodo S, White CJ, Guo HF, Kötting O, Vander Kooi CW, and Gentry MS. (2014). Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity. Proc Natl Acad Sci U S A. 2014;111(20):7272-7. DOI:10.1073/pnas.1400757111 | PubMed ID:24799671 [Meekins2014]
  4. Error fetching PMID 16216577: [Polekhina2005]
  5. Error fetching PMID 25774984: [Mobbs2015]
  6. Katsuya Y, Mezaki Y, Kubota M, and Matsuura Y. (1998). Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. J Mol Biol. 1998;281(5):885-97. DOI:10.1006/jmbi.1998.1992 | PubMed ID:9719642 [Katsuya1998]
  7. Error fetching PMID 10926520: [Feese2000]
  8. Abad MC, Binderup K, Rios-Steiner J, Arni RK, Preiss J, and Geiger JH. (2002). The X-ray crystallographic structure of Escherichia coli branching enzyme. J Biol Chem. 2002;277(44):42164-70. DOI:10.1074/jbc.M205746200 | PubMed ID:12196524 [Abad2002]
  9. Error fetching PMID 15784255: [Timmis2005]
  10. Error fetching PMID 16421442: [Leiros2006]
  11. Mikami B, Iwamoto H, Malle D, Yoon HJ, Demirkan-Sarikaya E, Mezaki Y, and Katsuya Y. (2006). Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol. 2006;359(3):690-707. DOI:10.1016/j.jmb.2006.03.058 | PubMed ID:16650854 [Mikami2006]
  12. Error fetching PMID 17851534: [Amodeo2007]
  13. Woo EJ, Lee S, Cha H, Park JT, Yoon SM, Song HN, and Park KH. (2008). Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem. 2008;283(42):28641-8. DOI:10.1074/jbc.M802560200 | PubMed ID:18703518 [Woo2008]
  14. Error fetching PMID 19329633: [Gourlay2009]
  15. Error fetching PMID 19382205: [Turkenburg2009]
  16. Error fetching PMID 20444687: [Pal2010]
  17. Error fetching PMID 20187119: [Song2010]
  18. Error fetching PMID 20679247: [Vander-Kooi2010]
  19. Vester-Christensen MB, Abou Hachem M, Svensson B, and Henriksen A. (2010). Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins. J Mol Biol. 2010;403(5):739-50. DOI:10.1016/j.jmb.2010.09.031 | PubMed ID:20863834 [Vester-Christensen2010]
  20. Error fetching PMID 21493662: [Noguchi2011]
  21. Error fetching PMID 22949184: [Moeller2012]
  22. Error fetching PMID 22334583: [Okazaki2012]
  23. Error fetching PMID 22902546: [Park2013]
  24. Error fetching PMID 24352254: [Xiao2013]
  25. Error fetching PMID 25066137: [Calabrese2014]
  26. Error fetching PMID 24993830: [Sim2014]
  27. Error fetching PMID 24375572: [Xu2014]
  28. Error fetching PMID 25412657: [Li2015]
  29. Error fetching PMID 25792743: [Moeller2015a]
  30. Error fetching PMID 25562209: [Moeller2015b]
  31. Error fetching PMID 22112614: [Janecek2011]
  32. Error fetching PMID 19139240: [Palomo2009]
  33. Error fetching PMID 19818631: [Gentry2009]
  34. Error fetching PMID 24456533: [Peng2014a]
  35. Error fetching PMID 17084392: [Machovic2006a]
  36. Christiansen C, Abou Hachem M, Janecek S, Viksø-Nielsen A, Blennow A, and Svensson B. (2009). The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J. 2009;276(18):5006-29. DOI:10.1111/j.1742-4658.2009.07221.x | PubMed ID:19682075 [Christiansen2009]
  37. Error fetching PMID 24613924: [Peng2014b]
  38. Machovic M, and Janecek S. “Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48.” Biologia 2008; 63: 1057-68. (DOI: 10.2478/s11756-008-0162-4)

    [Machovic2008]
  39. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 | PubMed ID:18838391 [Cantarel2009]
  40. Machovic M and Janecek S. (2006). Starch-binding domains in the post-genome era. Cell Mol Life Sci. 2006;63(23):2710-24. DOI:10.1007/s00018-006-6246-9 | PubMed ID:17013558 [Machovic2006b]

All Medline abstracts: PubMed