CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
 
(322 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''10 April 2017:''' ''A classic GH family:'' The '''[[Glycoside Hydrolase Family 22]]''' page was completed today by '''[[User:Spencer Williams|Spencer Williams]]''', with editorial input from [[Responsible Curator]] '''[[User:David Vocadlo|David Vocadlo]]'''.  '''[[GH22]]''' contains the classic bacterial peptidoglycan hydrolase, hen egg-white lysozyme (HEWL), the first enzyme for which the three-dimensional structure was solved (reported in 1965)Moreover, seminal enzyme-carbohydrate complex structures have made HEWL a paradigm for glycosidases that operate through the [[classical Koshland retaining mechanism]].  Although the nature of the glycosyl-enzyme intermediate remained contentious for many years since the original proposal of an oxacarbenium ion-carboxylate pair, a definitive study by  [[User:David Vocadlo|Vocadlo]], [[User:Gideon Davies|Davies]], Laine, and [[User:Steve Withers|Withers]] resolved the covalent nature of the glycosyl-enzyme HEWL, thus bring mechanistic understanding of this classic enzyme in concordance with other [[retaining]] GH familiesThe lysozyme fold of HEWL defines the archtype for other hexosaminidases (i.e. those of [[GH19]] and [[GH23]]), and notably has also been observed in recently emergent families of cellulases ([[GH124]]) and mannanases ([[GH134]]).  ''Find out more about this classic GH family  [[Glycoside Hydrolase Family 22|here]]!''
+
'''23 January 2026:''' ''An oldie, but a goodie:'' As our first page of the new year, the '''[[Glycoside Hydrolase Family 71]]''' page, written by '''[[User:Antonielle Vieira Monclaro|Antonielle Vieira Monclaro]]''', was [[Curator Approved]] by '''[[User:Johan Larsbrink|Johan Larsbrink]]''' today.  '''[[GH71]]''' is a family of mostly fungal alpha-1,3-glucanases that was established and subjected to mechanistic characterization in the early 2000sMore recently in 2025, the Yano and [[User:Johan Larsbrink|Larsbrink]] groups independently presented the first crystal structures of '''[[GH71]]''' members (from ''Schizosaccharomyces'' and ''Aspergillus'', respectively)''[[User:Antonielle Vieira Monclaro|Antonielle]] wrote an excellent overview of '''[[GH71]]''', which you should definitely check out '''[[GH71|here]]'''.''
 
----
 
----
'''2 December 2016:''' ''A new CAZyme-specific journal:'' The journal ''[https://www.degruyter.com/view/j/amylase Amylase]'' has been recently launched under the editorial leadership of [[User:Stefan Janecek|Stefan Janecek]] and a number of other CAZypedians, including [[User:Bernard Henrissat|Bernard Henrissat]], [[User:Magali Remaud-Simeon|Magali Remaud-Simeon]], [[User:Birte Svensson|Birte Svensson]], [[User:Pedro Coutinho|Pedro Coutinho]], and [[User:Leila LoLeggio|Leila LoLeggio]].  ''[https://www.degruyter.com/view/j/amylase Amylase]'' is an open access journal that will focus on the biochemistry and biotechnology of starch hydrolases and related alpha-glucan-active enzymes, such as those from '''[[GH13]]''', '''[[GH70]]''', and '''[[GH77]]''' ([[Clan]] GH-H), as well as '''[[GH57]]''', '''[[GH119]]''', '''[[GH14]]''', '''[[GH15]]''', and '''[[GH31]]'''.  Visit the ''[https://www.degruyter.com/view/j/amylase Amylase]'' homepage for more information on the scope of the journal and details on how to [http://www.editorialmanager.com/amylase/ submit manuscripts for publication].
+
'''8 December 2025:''' ''Just in time for the holidays:'' The '''[[Glycosyltransferase Family 138]]''' page by [[Author]] '''[[User:Wei Peng|Wei Peng]]''' and [[Responsible Curator]] '''[[User:Kim Orth|Kim Orth]]''' was [[Curator Approved]] today. '''[[GT138]]''' is small family of plant-associated bacterial membersThe archetype from ''Pseudomonas syringae'', AvrB, is a rhamnosyl transferase that glycosylates the plant host protein RIN4 to effect programmed cell death (hypersensitive response).  Also notable, AvrB has an unusual protein fold among [[glycosyltransferases]], based upon a "Fido" domain. '''''[[GT138]]''' represents one of a small, but hopefully growing, number of [[Glycosyltransferases|GT]] pages in ''CAZypedia'', whose unique features you should read more about '''[[GT138|here]]'''.''
 +
----
 +
'''31 October 2025:''' ''A spooktacular addition to the CAZypedia family!'' Come and say 'Boo!' to the frighteningly well written '''[[CBM13]]''' ''CAZypedia'' page.  The '''[[CBM13]]''' family is a '''[[Carbohydrate-binding_modules#Blurred Lines: CBMs, Lectins and Outliers|lectin-like CBM family]]'''. Its first characterized members were lectins, including the B chain from the highly toxic [https://en.wikipedia.org/wiki/Ricin ricin] toxin from ''Ricinus communis''.  This spine tingling read was authored by '''[[User:Scott Mazurkewich|Scott Mazurkewich]]''' and '''[[User:Lauren McKee|Lauren McKee]]''' who also acted as responsible curator. ''Come and visit the scariest of ''CAZypedia'' CBM pages, '''[[CBM13|here!]]'''...  if you dare...'' 
 +
----
 +
'''29 July 2025:''''[[CBM91]] is in the news!'' The xylan binding '''[[CBM91]]''' family ''CAZypedia'' page is up and runningAppended to mainly [[GH43]] xylanases this [[CBM91]] family drives interaction with substrate. The [[CBM91]] page was authored by '''[[User:Daichi Ito|Daichi Ito]]''' who also discovered the initial xylan-binding function which resulted in the creation of the [[CBM91]] CAZy family. ''Read up on this industrially interesting '''[[CBM91]]''' family '''[[CBM91|here]]'''.''
 
----
 
----

Latest revision as of 07:14, 26 January 2026

23 January 2026: An oldie, but a goodie: As our first page of the new year, the Glycoside Hydrolase Family 71 page, written by Antonielle Vieira Monclaro, was Curator Approved by Johan Larsbrink today. GH71 is a family of mostly fungal alpha-1,3-glucanases that was established and subjected to mechanistic characterization in the early 2000s. More recently in 2025, the Yano and Larsbrink groups independently presented the first crystal structures of GH71 members (from Schizosaccharomyces and Aspergillus, respectively). Antonielle wrote an excellent overview of GH71, which you should definitely check out here.


8 December 2025: Just in time for the holidays: The Glycosyltransferase Family 138 page by Author Wei Peng and Responsible Curator Kim Orth was Curator Approved today. GT138 is small family of plant-associated bacterial members. The archetype from Pseudomonas syringae, AvrB, is a rhamnosyl transferase that glycosylates the plant host protein RIN4 to effect programmed cell death (hypersensitive response). Also notable, AvrB has an unusual protein fold among glycosyltransferases, based upon a "Fido" domain. GT138 represents one of a small, but hopefully growing, number of GT pages in CAZypedia, whose unique features you should read more about here.


31 October 2025: A spooktacular addition to the CAZypedia family! Come and say 'Boo!' to the frighteningly well written CBM13 CAZypedia page. The CBM13 family is a lectin-like CBM family. Its first characterized members were lectins, including the B chain from the highly toxic ricin toxin from Ricinus communis. This spine tingling read was authored by Scott Mazurkewich and Lauren McKee who also acted as responsible curator. Come and visit the scariest of CAZypedia CBM pages, here!... if you dare...


29 July 2025: CBM91 is in the news! The xylan binding CBM91 family CAZypedia page is up and running. Appended to mainly GH43 xylanases this CBM91 family drives interaction with substrate. The CBM91 page was authored by Daichi Ito who also discovered the initial xylan-binding function which resulted in the creation of the CBM91 CAZy family. Read up on this industrially interesting CBM91 family here.