CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 84"

From CAZypedia
Jump to navigation Jump to search
Line 50: Line 50:
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
 
The reported crystallization of ''Clostridium perfringens'' NagJ<cite>ABB2005 </cite> was followed by solved structures for that enzyme<cite>DvA2006</cite> and ''Bacteroides thetaiotaomicron'' ''β''-hexosaminidase<cite>DvA2006</cite>.
 
The reported crystallization of ''Clostridium perfringens'' NagJ<cite>ABB2005 </cite> was followed by solved structures for that enzyme<cite>DvA2006</cite> and ''Bacteroides thetaiotaomicron'' ''β''-hexosaminidase<cite>DvA2006</cite>.
A series of crystallographic studies on ''Bacteroides thetaiotaomicron'' ''β''-hexosaminidase using a variety of small molecules define the conformational itinerary for this family. Substrate distortion: WT + azepane <cite>Ble2009</cite>, WT + difluoroacetyl <cite>GJD2010</cite>, 4C1 intermediate: WT + thiazoline <cite>DJV2005</cite>, general acid mutants Asp243Asn + 5-fluorooxazoline derived from b-1,5-difluoroglucosaminide,<cite>GJD2010</cite> Asp243Asn + oxazoline derived from 4-methylumbelliferyl b-glucosaminide,<cite>GJD2010</cite>.
+
A series of crystallographic studies on ''Bacteroides thetaiotaomicron'' ''β''-hexosaminidase have used a variety of small molecules to define define the conformational itinerary for this family of enzymes. Substrate distortion from the 4C1 conformation found in solution to a bound 1,4B / 1S3 conformation was supported by the crystal structure of the wild-type enzyme in complex with the 7-membered azepane. <cite>Ble2009</cite> This distortion was confirmed by the structure the wild-type enzyme in complex with the substrate, 3,4-difluorophenyl 2-deoxy-2-difluoroacetamido-''β''-D-glucopyranoside.<cite>GJD2010</cite> Earlier studies of the wild-type-bound thiazoline show that this intermediate is found in a 4C1 conformation.<cite>DJV2005</cite> Subsequent studies have shown that oxazoline intermediates are also bound to the general acid mutant Asp243Asn + 5-fluorooxazoline derived from b-1,5-difluoroglucosaminide,<cite>GJD2010</cite> Asp243Asn + oxazoline derived from 4-methylumbelliferyl b-glucosaminide,<cite>GJD2010</cite>.
  
  

Revision as of 11:14, 7 December 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH84
Clan none
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/GH84.html


Substrate specificities

GH84 contains β-N-acetylglucosaminidases and β-N-acetylhyaluronidase activities. Human O-GlcNAcase is a cytosolic enzyme whose in vivo targets are glycoprotein serine and threonine residues modified by a single β-linked GlcNAc residue. In contrast to the β-hexosaminidases of GH20 a relaxed specificity for substitutions of the N-acyl group is observed with residues significantly more bulky than the N-acyl group being tolerated.[1]


Kinetics and Mechanism

Members of GH84 utilize a mechanism of neighbouring group participation, this originally being established through the use of free-energy relationship-based studies of human O-GlNAcase.[1] More recent studies of this enzyme have extended such investigated variations in rates of reaction (V/K) with both nucleophile and leaving group structures.[2] For substrates possessing the naturally-occurring acetyl nucleophile a pre-chemical step is rate-determining on V/K for leaving groups with a pKa below 11 (with the chemical step rate-determining for substrates with higher pKa values). Studies of substrates possessing fluoroacetyl nucleophiles highlighted that a dissociative (DN*AN) mechanism involving general acid catalysis operates for the hydrolysis of substrates possessing leaving groups with a pKa greater than approximately 7; a concerted (ANDN) mechanism, not employing general acid catalysis was found for substrates possessing leaving groups with lower pKas (consistent with prior studies of S-glucosaminide hydrolysis[3]). Substrate distortion.[2, 4] A truncated, nuclear-localized isoform of human O-GlcNAcase lacking the putative C-terminal histone acetyl transferase domain retains similar kinetic properties and inhibitory patterns as the full-length cytosolic isoform and is consistent with hexosaminidase activity residing in the N-terminal domain.[5]


Catalytic Residues

Studies of two mutants of human O-GlcNAcase established that adjacent aspartate residues, Asp174 and Asp175, act as critical components of the catalytic machinery of this enzyme.[6]

The mutant Asp175Ala displayed marked reductions in activity (V and (V/K)) towards aryl N-acetylglucosaminides possessing poor leaving groups with smaller reductions being observed for both O-aryl and S-aryl N-acetylglucosaminides substrates possessing better leaving groups. Exogenous azide was found to partially rescue the activity of human O-GlcNAcase towards 3,4-dinitrophenylglucosaminide. These results identify Asp175 as the general acid catalyst.

The mutant Asp174Ala showed decreased activity towards O-aryl N-acetylglucosaminides possessing good leaving groups and it was argued that this is consistent with its role as a residue responsible for the orientation and polarization of the N-acyl nucleophile.


Three-dimensional structures

The reported crystallization of Clostridium perfringens NagJ[7] was followed by solved structures for that enzyme[8] and Bacteroides thetaiotaomicron β-hexosaminidase[8]. A series of crystallographic studies on Bacteroides thetaiotaomicron β-hexosaminidase have used a variety of small molecules to define define the conformational itinerary for this family of enzymes. Substrate distortion from the 4C1 conformation found in solution to a bound 1,4B / 1S3 conformation was supported by the crystal structure of the wild-type enzyme in complex with the 7-membered azepane. [9] This distortion was confirmed by the structure the wild-type enzyme in complex with the substrate, 3,4-difluorophenyl 2-deoxy-2-difluoroacetamido-β-D-glucopyranoside.[10] Earlier studies of the wild-type-bound thiazoline show that this intermediate is found in a 4C1 conformation.[1] Subsequent studies have shown that oxazoline intermediates are also bound to the general acid mutant Asp243Asn + 5-fluorooxazoline derived from b-1,5-difluoroglucosaminide,[10] Asp243Asn + oxazoline derived from 4-methylumbelliferyl b-glucosaminide,[10].


Family Firsts

First sterochemistry determination
1H-NMR studies of human O-GlcNAcase established that the β-configured hemiacetal product is formed prior to anomerisation.[2].
First catalytic nucleophile identification
This family of enzymes uses a mechanism of neighbouring group participation, which was first establishes through the use of free energy relationships studies.[1].
First general acid/base residue identification
Studies of human O-GlcNAcase mutant Asp175Ala identify reactivity patterns (free energy relationships, pH-activity profiles) consistent with the action of Asp175 as the catalytic general acid/base.[6].
First 3-D structure
The structures of Bacteroides thetaiotaomicron O-GlcNAcase[11] and Clostridium perfringens NagJ[8].

References

Error fetching PMID 16511172:
Error fetching PMID 19331390:
Error fetching PMID 19423084:
Error fetching PMID 16332065:
Error fetching PMID 19715310:
Error fetching PMID 20067256:
Error fetching PMID 16565725:
Error fetching PMID 20067256:
Error fetching PMID 16541109:
  1. Macauley MS, Whitworth GE, Debowski AW, Chin D, and Vocadlo DJ. (2005). O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem. 2005;280(27):25313-22. DOI:10.1074/jbc.M413819200 | PubMed ID:15795231 [DJV2005]
  2. Error fetching PMID 19715310: [DJV2009]
  3. Error fetching PMID 16332065: [DJV2005Thio]
  4. Error fetching PMID 20067256: [DJV2010]
  5. Error fetching PMID 19423084: [DJV2009Trunc]
  6. Cetinbaş N, Macauley MS, Stubbs KA, Drapala R, Vocadlo DJ. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants. Biochemistry. 2006 Mar 21;45(11):3835-44.

    [DJV2006]

    Note: Due to a problem with PubMed data, this reference is not automatically formatted. Please see these links out: DOI:10.1021/bi052370b PMID:16533067

  7. Error fetching PMID 16511172: [ABB2005]
  8. Error fetching PMID 16541109: [DvA2006]
  9. Error fetching PMID 19331390: [Ble2009]
  10. Error fetching PMID 20067256: [GJD2010]
  11. Error fetching PMID 16565725: [GJD2006]
  12. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n | PubMed ID:17323919 [Comfort2007]
  13. He S and Withers SG. (1997). Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem. 1997;272(40):24864-7. DOI:10.1074/jbc.272.40.24864 | PubMed ID:9312086 [He1999]
  14. Robert V. Stick and Spencer J. Williams. (2009) Carbohydrates. Elsevier Science. [3]
  15. Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. DOI: 10.1021/cr00105a006

    [MikesClassic]

All Medline abstracts: PubMed