CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Glycoside Hydrolase Family 173

From CAZypedia
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH173
Clan GH-A
Mechanism retainingi (inferred)
Active site residues known (inferred)
CAZy DB link
http://www.cazy.org/GH173.html


Substrate specificities

The GH173 family comprises members with β-galactosidase activity [1]. The founding member of the GH173 family named herein as CapGH173, was identified in a novel metagenome-assembled genome (MAG) recovered from the Bacteroidales bacterium MAG42, a novel genus among the Uncultivated Bacteria and Archaea family (UBA932). CapGH173 was found in a Polysaccharide Utilization Loci (PUL) that includes enzymes from families GH2 and GH78; however, a multidomain protein organization was also predicted among GH173 members, having an additional GH36 domain. Biochemical characterization of CapGH173 showed it is active on p-nitrophenyl-β-D-galactopyranoside (pNP-β-D-Gal) and kinetic parameters were determined from substrate saturation curves. Phylogenetic analysis showed that CapGH173 is remotely related to GH-A CAZy families, with GH30 and GH5 being the closest ones [1].

Kinetics and Mechanism

Content is to be added here.

Catalytic Residues

Content is to be added here.

Three-dimensional structures

Protein modeling and threading performed using AlphaFold and PDBsum, respectively, revealed that CapGH173 consists of an (α/β)8-barrel structure, which is an archetypal scaffold of the clan GH-A. According to structural predictions, CapGH173 exhibits a two-domain architecture including an appended β-sandwich domain, which is a similar structural organization found in the GH30 family. Except for the residues defining the clan GH-A, sequence alignment with GH5 and GH30 members revealed a very low sequence conservation below the criterium for significant similarity detection (using an e-value < 0.05), demonstrating that although the domains in the tertiary structure can be similar, the sequences between these families are remarkably diverse [1].  

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB, Chinaglia M, Domingues MN, Sforca ML, Pirolla RAS, Generoso WC, Santos CA, Maciel LF, Terrapon N, Lombard V, Henrissat B, and Murakami MT. (2022). Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022;13(1):629. DOI:10.1038/s41467-022-28310-y | PubMed ID:35110564 [Cabral2022]