CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
Line 1: Line 1:
 
'''23 June 2023:''' ''Human milk oligosaccharide metabolism.'' [[Author]] '''[[User:Chihaya Yamada|Chihaya Yamada]]''' and [[Responsible Curator]] '''[[User:Shinya Fushinobu|Shinya Fushinobu]]''' upgraded the '''[[Glycoside Hydrolase Family 136]]''' page to [[Curator Approved]] status today.  '''[[GH136]]''' is a family of bacterial lacto-''N''-biosidases that release lacto-''N''-biose I and lactose from lacto-N-tetraose, the main component of human milk oligosaccharides.  These enzymes have a comparatively rare right-handed beta helix fold that more typical of pectin-active [[PL]]s and [[GH]]s. ''Read more about these interesting enzymes and their role in the human gut microbiota [[GH136|here]]!''
 
'''23 June 2023:''' ''Human milk oligosaccharide metabolism.'' [[Author]] '''[[User:Chihaya Yamada|Chihaya Yamada]]''' and [[Responsible Curator]] '''[[User:Shinya Fushinobu|Shinya Fushinobu]]''' upgraded the '''[[Glycoside Hydrolase Family 136]]''' page to [[Curator Approved]] status today.  '''[[GH136]]''' is a family of bacterial lacto-''N''-biosidases that release lacto-''N''-biose I and lactose from lacto-N-tetraose, the main component of human milk oligosaccharides.  These enzymes have a comparatively rare right-handed beta helix fold that more typical of pectin-active [[PL]]s and [[GH]]s. ''Read more about these interesting enzymes and their role in the human gut microbiota [[GH136|here]]!''
 +
----
 +
 +
'''22 June 2023:''' ''These [[CBM89]]s are sizeable!'' The recently discovered xylan-binding CBM89 family, originating from the capybara gut microbiota, is described by [[Author]]s: [[User:Mariana Morais|Mariana Abrahão Bueno de Morais]] and [[User:Gabriela Persinoti|Gabriela Felix Persinoti]]. [[User:Mario Murakami|Mario Murakami]] acted as  [[Responsible Curator]] on the [[CBM89|page]].  [[CBM89]]s are 600 - 1000 amino acids long which puts them in the upper echelons of CBM sizes - just as the capybara is to the rodent order.  You can check out the write up on these unusually large CBMs on their '''[[CBM89]] CAZypedia [[CBM89|page]]'''.
 +
 
----
 
----
  

Revision as of 06:15, 5 July 2023

23 June 2023: Human milk oligosaccharide metabolism. Author Chihaya Yamada and Responsible Curator Shinya Fushinobu upgraded the Glycoside Hydrolase Family 136 page to Curator Approved status today. GH136 is a family of bacterial lacto-N-biosidases that release lacto-N-biose I and lactose from lacto-N-tetraose, the main component of human milk oligosaccharides. These enzymes have a comparatively rare right-handed beta helix fold that more typical of pectin-active PLs and GHs. Read more about these interesting enzymes and their role in the human gut microbiota here!


22 June 2023: These CBM89s are sizeable! The recently discovered xylan-binding CBM89 family, originating from the capybara gut microbiota, is described by Authors: Mariana Abrahão Bueno de Morais and Gabriela Felix Persinoti. Mario Murakami acted as Responsible Curator on the page. CBM89s are 600 - 1000 amino acids long which puts them in the upper echelons of CBM sizes - just as the capybara is to the rodent order. You can check out the write up on these unusually large CBMs on their CBM89 CAZypedia page.


26 May 2023: A new page for a nacent family. Author Guanchen Liu and Responsible Curator Yaoguang Chang completed the Glycoside Hydrolase Family 174 page today. GH174 is a recently established family of (so far) bacterial alpha-1,3-L-fucanases, which was reported by Guanchen Liu, Yaoguang Chang and colleagues in April, following the characterization of a representative from the marine bacterium Wenyingzhuangia aestuarii. Notably, this enzyme appears to prefer sulfated fucans, and generates a highly sulfated tetrasaccharide as the main hydrolysis product. Read more about this interesting enzyme and family here!


13 April 2023: The champagne is on ice! We are ecstatic to report that we’ve hit 50 Curator Approved CAZypedia CBM pages!

The CBM92 and the CBM94 page were finished within under 3 hours of one another. Congratulations to the contributors for both of the pages: new CAZypedia contibutors Xuanwei Mei and Yaoguang Chang for the CBM92 page and longtime CAZypedia contributor Takatsugu Miyazaki for the CBM94 page.

Next stop: 100 Curator Approved CBM pages (this may take a little while).


13 April 2023, 00:20: CBM92 is red hot! CBM92 is one of the newer families of CBMs and it has a red hot preference for the red algal extracellular matrix polysaccharide carrageenan, a complex sulfated galactan. Author Xuanwei Mei describes the novel carrageenan-binding capacities of the biochemically characterized CBM92 which can be found appended to a kappa-carrageenase produced by the marine bacterium Wenyingzhuangia aestuarii. Yaoguang Chang acted as responsible curator on the page. Head on over to the CBM92 page to learn more about this red hot CBM family!


12 April 2023, 21:50: CBM94, one for the books! Three of the CBM94 eukaryotic members have recently been characterized (mouse, silkworm and human) and are described in detail on the CBM94 page which has both been authored and responsibly curated by Takatsugu Miyazaki. These N-acetylglucosamine-specific CBM94s are found on the C-termini of N-acetylglucosaminyltransferase IVa, an enzyme involved in N-glycan biosynthesis. The CBM94 members play important roles in the functionality of their cognate glycosyl transferase catalytic module which is discussed in detail on the CBM94 CAZypedia page. See more on these remarkable eukaryotic CBMs here!