New to the CAZy classification? Read this first.
Want to learn more about CAZypedia? Read the CAZypedia 10th anniversary article in Glycobiology.

Carbohydrate Esterase Family 15

From CAZypedia
Jump to: navigation, search
Under construction icon-blue-48px.png
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.

Carbohydrate Esterase Family CE15
Clan GH-x
Mechanism retaining/inverting
Active site residues known/not known
CAZy DB link

Substrate specificity

All CE15 enzymes characterized to-date are glucuronoyl esterases, cleaving esters of D-glucuronic acid. The first reported glucuronoyl esterase was ScGE1 from the white-rot fungus Schizophyllum commune, and the activity was demonstrated by TLC on a methyl ester of 4-O-methyl-D-glucuronic acid [1]. While CE15 members are found in both fungal and bacterial species, several bacterial CE15 enzymes are more promiscuous than their fungal counterparts and are active also on esters of galacturonoate [2]. Feruloyl- and acetyl esterase activities have been reported for certain CE15 enzymes as side activities [3, 4]. The proposed physiological role of CE15 enzymes is to hydrolyze lignin-carbohydrate ester linkages between lignin and glucuronoxylan in plant cell walls, and a few studies have demonstrated their activity on lignocellulose-derived materials and plant biomass [4, 5, 6].

Three-dimensional structures

Representative structures of CE15 enzymes from bacterial and fungal sources have been determined, including TrGE (Cip2) from T. reesei (Hypocrea jecorina, PDB 3pic) [7], StGE2 from Thermothelomyces thermophila (Sporotrichum thermophile, PDB 4g4g, 4g4i, and 4g4j) [8], marine metagenome sequence MZ0003 (PDB 6ehn) [9], OtCE15A (PDB 6grw and 6gs0) and SuCE15C (PDB 6gry and 6gu8) [2] (see the CAZy database for a continuously updated list). All structurally determined CE15 enzymes share an alpha/beta hydrolase fold, consisting of a three-layer alpha-beta-alpha sandwich with the active site in a solvent-exposed cleft. The structures of the bacterial enzymes determined thus far exhibit sizeable inserts which result in much deeper active site pockets compared to the shallow active sites seen in fungal glucuronoyl esterase structures [2, 9].

Catalytic Residues and Mechanism

All CE15 enzymes are serine-type hydrolases, containing a catalytic triad of Glu/Asp-His-Ser [2, 7, 8, 9]. The position of the acidic residue of the triad is not similarly positioned in all CE15 members as the residue can be found on different loops of the conserved fold [9]. A conserved arginine found in all of the CE15 structures, proximal to the catalytic triad, has been proposed to stabilize the formation of the oxyanion during catalysis [2].

Family Firsts

First 3-D structure
The first solved structure of a CE15 enzyme was the Cip2 catalytic domain from Trichoderma reesei (TrGE) [7].
First mechanistic insight
The crystal structure of StGE2 (from Sporotrichum thermophile) in complex with the ligand 4-O-methyl-beta-D-glucopyranuronate gave the first direct insight into substrate binding [8].


  1. Spániková S and Biely P. (2006) Glucuronoyl esterase--novel carbohydrate esterase produced by Schizophyllum commune. FEBS Lett. 580, 4597-601. DOI:10.1016/j.febslet.2006.07.033 | PubMed ID:16876163 | HubMed [Spanikova2006]
  2. Arnling Bååth J, Mazurkewich S, Knudsen RM, Poulsen JN, Olsson L, Lo Leggio L, and Larsbrink J. (2018) Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnol Biofuels. 11, 213. DOI:10.1186/s13068-018-1213-x | PubMed ID:30083226 | HubMed [Arnlingbaath2018]
  3. De Santi C, Willassen NP, and Williamson A. (2016) Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome. PLoS One. 11, e0159345. DOI:10.1371/journal.pone.0159345 | PubMed ID:27433797 | HubMed [Desanti2016]
  4. Mosbech C, Holck J, Meyer AS, and Agger JW. (2018) The natural catalytic function of CuGE glucuronoyl esterase in hydrolysis of genuine lignin-carbohydrate complexes from birch. Biotechnol Biofuels. 11, 71. DOI:10.1186/s13068-018-1075-2 | PubMed ID:29560026 | HubMed [Mosbech2018]
  5. d'Errico C, Börjesson J, Ding H, Krogh KB, Spodsberg N, Madsen R, and Monrad RN. (2016) Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate. J Biotechnol. 219, 117-23. DOI:10.1016/j.jbiotec.2015.12.024 | PubMed ID:26712478 | HubMed [Derrico2016]
  6. Arnling Bååth J, Giummarella N, Klaubauf S, Lawoko M, and Olsson L. (2016) A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds. FEBS Lett. 590, 2611-8. DOI:10.1002/1873-3468.12290 | PubMed ID:27397104 | HubMed [Arnlingbaath2016]
  7. Pokkuluri PR, Duke NE, Wood SJ, Cotta MA, Li XL, Biely P, and Schiffer M. (2011) Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina. Proteins. 79, 2588-92. DOI:10.1002/prot.23088 | PubMed ID:21661060 | HubMed [Pokkuluri2011]
  8. Charavgi MD, Dimarogona M, Topakas E, Christakopoulos P, and Chrysina ED. (2013) The structure of a novel glucuronoyl esterase from Myceliophthora thermophila gives new insights into its role as a potential biocatalyst. Acta Crystallogr D Biol Crystallogr. 69, 63-73. DOI:10.1107/S0907444912042400 | PubMed ID:23275164 | HubMed [Charavgi2013]
  9. De Santi C, Gani OA, Helland R, and Williamson A. (2017) Structural insight into a CE15 esterase from the marine bacterial metagenome. Sci Rep. 7, 17278. DOI:10.1038/s41598-017-17677-4 | PubMed ID:29222424 | HubMed [Desanti2017]
All Medline abstracts: PubMed | HubMed