CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
 
(203 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''28 February 2019:''' ''CE9 is CE page #2!:'' Graduate student '''[[User:Alex Anderson|Alex Anderson]]''' has completed ''CAZypedia's'' second [[:Category:Carbohydrate Esterase Families|Carbohydrate Esterase (CE)]] family page, '''[[Carbohydrate Esterase Family 9]]''', which was [[Curator Approved]] by his supervisor  '''[[User:Michael Suits|Michael Suits]]''' today.  '''[[CE9]]''' enzymes are metal-dependent ''N''-acetylglucosamine 6-phosphate deacetylases that function in peptidoglycan recycling in bacteria.  '''[[CE9]]''' is a huge family, currently comprising over 10,000 members (nearly all are from bacteria), which underscores their biological importance.  '''[[User:Alex Anderson|Alex]]''' and  '''[[User:Michael Suits|Mike]]''' completed ''CAZypedia's'' first [[:Category:Carbohydrate Esterase Families|CE family page]], [[CE4]] earlier this month, and we thank them for these seminal expansions of of our resource.  ''Learn more about the structure and mechanism of metal-dependent deamidases here: [[CE9]], [[CE4]]''.
+
'''2 May 2024:''' ''CBDs I to X... A major milestone!'' '''CBM families 1 to 10 are now complete!''' These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective ''CAZypedia'' pages: '''[[CBM1]], [[CBM2]], [[CBM3]], [[CBM4]], [[CBM5]], [[CBM6]], [[CBM7]], [[CBM8]], [[CBM9]], and [[CBM10]]'''.  
 
----
 
----
 
+
'''11 February 2024:''' ''A "BLAST" from the past, with a fresh update.'' [[Author]] '''[[User:Eduardo Moreno Prieto|Eduardo Moreno Prieto]]''' composed a new page on '''[[Glycoside Hydrolase Family 119]]''',a family of bacterial amylases, which was [[Curator Approved]] by '''[[User:Stefan Janecek|Stefan Janecek]]''' and '''[[User:Bernard Henrissat|Bernard Henrissat]]''' today.  The first member of '''[[GH119]]''' was characterized in 2006, and through sequence analysis with [[GH57]] members, [[User:Stefan Janecek|Janeček]] and Kuchtová predicted the active-site residues in 2012.  Over a decade later, '''[[User:Eduardo Moreno Prieto|Eduardo]]''', '''[[User:Bernard Henrissat|Bernard]]''', and colleagues finally provided critical experimental support for these predictions.  ''Learn more about this history, and especially the relationship between '''[[GH119]]''' and '''[[GH57]]''', in CAZypedia.''
'''22 February 2019:''' ''Starch-active LPMOs:'' '''[[User:Glyn Hemsworth|Glyn Hemsworth]]''' recently completed the '''[[Auxiliary Activity Family 13]]''' page, which was [[Curator Approved]] by [[Responsible Curator]] '''[[User:Gideon Davies|Gideon Davies]]''' today.  '''[[AA13]]''' was first identified in 2014 and is notable as the first lytic polysaccharide mono-oxygenase (LPMO) family that is active on alpha-glycosidic bonds, ''viz.'' those in amylose (starch).  Overall, LPMOs are an intriguing group of copper-dependent oxidases that open-up insoluble polysaccharide substrates for increased attack by [[glycoside hydrolases]].  ''Read more about '''[[AA13]]''' and related beta-glycan-active LPMOs ([[AA9]], [[AA10]], [[AA11]], [[AA14]], & AA15) on their respective [[Auxiliary Activity Families|CAZypedia pages]] and at the [http://www.cazy.org/Auxiliary-Activities.html CAZy Database].''
 
 
 
 
----
 
----
'''4 February 2019:''' ''CAZypedia's first CE page!'' Today [[Responsible Curator]] '''[[User:Michael Suits|Michael Suits]]''' approved the '''[[Carbohydrate Esterase Family 4]]''' page [[author]]ed by graduate student '''[[User:Alex Anderson|Alex Anderson]]''', thereby marking a new milestone ''CAZypedia's'' [[CAZypedia:History|history]][[:Category:Carbohydrate Esterase Families|Carbohydrate Esterases (CEs)]] catalyze the de-''O''-acylation or de-''N''-acylation of saccharides (the latter are formally amidases), and '''[[CE4]]''' contains members with either activity, ''e.g.'' acetylxylan esterases and peptidoglycan deacetylases. '''[[CE4]]''' members thus play diverse biological roles in nature.  ''Learn more about the structure and mechanism of these metal-dependent de-acylases [[CE4|here]]''.
+
'''3 February 2024:''' ''A new family of beta-1,2-glucan-cyclizing enzymes.'' A page on the (currently) newest GH family, '''[[Glycoside Hydrolase Family 189]]''', was completed today by [[Author]]s '''[[User:Tomoko Masaike|Tomoko Masaike]]''', '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''', and '''[[User:Nobukiyo Tanaka|Nobukiyo Tanaka]]''' ([[User:Masahiro Nakajima|Masahiro Nakajima]] is the [[Responsible Curator]]). '''[[GH189]]''' is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules.  The discovery of '''[[GH189]]''' builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in [[GH144]] and [[GH162]], which share a common protein fold with '''[[GH189]]''', but have distinct mechansims. ''Check out the '''[[GH189]]''', [[GH144]], and [[GH162]] pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!''
----
 
'''27 November 2018:''' ''Remember, remember... an end of November new CAZypedia CBM family page.'' The type C L-rhamnose binding [[CBM67]] family is now on-line in CAZypedia.  '''[[User:Satoshi Kaneko|Satoshi Kaneko]]''' authored the page and '''[[User:Harry Gilbert|Harry Gilbert]]''' acted as responsible curator.  ''Learn more about the structure and function of the [[CBM67]] family on its CAZypedia [[CBM67|page]]''.
 
----
 
'''23 November 2018:''' ''Welcome to the CAZypedia fold [[CBM49]]!'' The crystalline cellulose-binding [[CBM49]] CAZypedia page was authored by '''[[User:Breeanna Urbanowicz|Breeanna Urbanowicz]]''' and '''[[User:Elizabeth Ficko-Blean|Elizabeth Ficko-Blean]]'''.  '''[[User:Breeanna Urbanowicz|Breeanna Urbanowicz]]''' also acted as responsible curator.  There is experimental evidence that rice [[CBM49]] is cleaved post-translationally in vivo which probably plays an important role in plant growth. ''Find out more about the functionally interesting family 49 CBMs [[CBM49|here]]''.
 
 
----
 
----

Latest revision as of 08:08, 2 May 2024

2 May 2024: CBDs I to X... A major milestone! CBM families 1 to 10 are now complete! These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective CAZypedia pages: CBM1, CBM2, CBM3, CBM4, CBM5, CBM6, CBM7, CBM8, CBM9, and CBM10.


11 February 2024: A "BLAST" from the past, with a fresh update. Author Eduardo Moreno Prieto composed a new page on Glycoside Hydrolase Family 119,a family of bacterial amylases, which was Curator Approved by Stefan Janecek and Bernard Henrissat today. The first member of GH119 was characterized in 2006, and through sequence analysis with GH57 members, Janeček and Kuchtová predicted the active-site residues in 2012. Over a decade later, Eduardo, Bernard, and colleagues finally provided critical experimental support for these predictions. Learn more about this history, and especially the relationship between GH119 and GH57, in CAZypedia.


3 February 2024: A new family of beta-1,2-glucan-cyclizing enzymes. A page on the (currently) newest GH family, Glycoside Hydrolase Family 189, was completed today by Authors Tomoko Masaike, Masahiro Nakajima, and Nobukiyo Tanaka (Masahiro Nakajima is the Responsible Curator). GH189 is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules. The discovery of GH189 builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in GH144 and GH162, which share a common protein fold with GH189, but have distinct mechansims. Check out the GH189, GH144, and GH162 pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!