CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

User:Johan Larsbrink

From CAZypedia
Revision as of 12:41, 13 November 2018 by Johan Larsbrink (talk | contribs)
Jump to navigation Jump to search
JLarsbrink.jpg

Assistant Professor at the Department of Biology and Biological Engineering, Chalmers University of Technology.

Background

I obtained a MSc degree in Biotechnology at the Royal Institute of Technology (KTH) in 2007, where I later also completed my PhD thesis under the supervision of ^^^Harry Brumer^^^, focusing on xyloglucan degradation [1, 2, 3]. After working as a postdoctoral fellow with Phil Pope and ^^^Vincent Eijsink^^^ at the Norwegian University of Life Sciences (NMBU), working on chitin degradation [4], I was in 2015 appointed Assistant Professor at Chalmers University of Technology. My research focuses primarily on enzyme (CAZyme) discovery coupled to structural and biochemical characterization.

I have contributed to structure-function studies of CAZymes from various families, including GH5 [2], GH18, GH31 [1, 2, 5], GH35 [3], and CE15 [6].

Selected papers

  1. Larsbrink J, Izumi A, Ibatullin FM, Nakhai A, Gilbert HJ, Davies GJ, and Brumer H. (2011). Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem J. 2011;436(3):567-80. DOI:10.1042/BJ20110299 | PubMed ID:21426303 [Larsbrink2011]
  2. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, and Brumer H. (2014). A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature. 2014;506(7489):498-502. DOI:10.1038/nature12907 | PubMed ID:24463512 [Larsbrink2014a]
  3. Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, and Brumer H. (2014). A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol. 2014;94(2):418-33. DOI:10.1111/mmi.12776 | PubMed ID:25171165 [Larsbrink2014b]
  4. Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, McBride MJ, and Pope PB. (2016). A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol Biofuels. 2016;9:260. DOI:10.1186/s13068-016-0674-z | PubMed ID:27933102 [Larsbrink2016]
  5. Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, and Brumer H. (2012). Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J Biol Chem. 2012;287(52):43288-99. DOI:10.1074/jbc.M112.416511 | PubMed ID:23132856 [Larsbrink2012]
  6. Arnling Bååth J, Mazurkewich S, Knudsen RM, Poulsen JN, Olsson L, Lo Leggio L, and Larsbrink J. (2018). Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnol Biofuels. 2018;11:213. DOI:10.1186/s13068-018-1213-x | PubMed ID:30083226 [JAB2018]

All Medline abstracts: PubMed