CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
(459 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''28 February 2011:''' ''Hexosaminidases'' The '''[[Glycoside Hydrolase Family 20]]''' and '''[[Glycoside Hydrolase Family 84]]''' pages, which were completed last week by [[Author]] '''[[User:Ian Greig|Ian Greig]]''' and approved by [[Responsible Curator]] '''[[User:David Vocadlo|David Vocadlo]]''', have today been cross-linked from the [[http://www.cazy.org CAZy database]] ''(look out for the next public release)''.  [[GH20]] is of significant medical relevance, as it contains the human enzymes HexA and HexB, deficiencies of which case Tay-Sachs disease and Sandhoff diseases, respectively.  [[GH84]] is similarly important in the context of cell and organism biology, as this family contains human HexC, a nuclear and cytoplasmic enzyme that is responsible for dynamic modulation of β-linked ''O''-GlcNAc residues linked to serine and threonine residues.  ''O''-GlcNAc'ylation of specific residues, in competition with ''O''-phosphorylation, is believed to modulate protein biochemistry, with implications for diverse cellular processes and disease states.
+
'''11 February 2024:''' ''A "BLAST" from the past, with a fresh update.'' [[Author]] '''[[User:Eduardo Moreno Prieto|Eduardo Moreno Prieto]]''' composed a new page on '''[[Glycoside Hydrolase Family 119]]''',a family of bacterial amylases, which was [[Curator Approved]] by '''[[User:Stefan Janecek|Stefan Janecek]]''' and '''[[User:Bernard Henrissat|Bernard Henrissat]]''' today.  The first member of '''[[GH119]]''' was characterized in 2006, and through sequence analysis with [[GH57]] members, [[User:Stefan Janecek|Janeček]] and Kuchtová predicted the active-site residues in 2012Over a decade later, '''[[User:Eduardo Moreno Prieto|Eduardo]]''', '''[[User:Bernard Henrissat|Bernard]]''', and colleagues finally provided critical experimental support for these predictions.  ''Learn more about this history, and especially the relationship between '''[[GH119]]''' and '''[[GH57]]''', in CAZypedia.''
 
----
 
----
'''07 February 2011:''' ''A landmark CAZypedia page:'' This one has been a long time coming, but today '''[[User:Birte Svensson|Birte Svensson]]''' and '''[[User:Stefan Janecek|Stefan Janecek]]''' completed the '''[[Glycoside Hydrolase Family 13]]''' page. '''[[GH13]]''' is, quite simply, THE family of α-glucoside-degrading and -rearranging enzymes, with over 10000 members distributed into more than 35 subfamilies, which represent tens of enzyme activitiesDue to the central role starch (amylose/amylopectin) and glycogen play in energy storage, these enzymes are of immense [http://dx.doi.org/10.1093/jxb/erq411 ecological] and [http://dx.doi.org/10.1016/S0168-1656(01)00407-2 biotechnological] importance. ''[[GH13]] is also our 70th [[Glycoside Hydrolase Families|Curator Approved GH Family]] page!!!''
+
'''3 February 2024:''' ''A new family of beta-1,2-glucan-cyclizing enzymes.'' A page on the (currently) newest GH family, '''[[Glycoside Hydrolase Family 189]]''', was completed today by [[Author]]s '''[[User:Tomoko Masaike|Tomoko Masaike]]''', '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''', and '''[[User:Nobukiyo Tanaka|Nobukiyo Tanaka]]''' ([[User:Masahiro Nakajima|Masahiro Nakajima]] is the [[Responsible Curator]]). '''[[GH189]]''' is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector moleculesThe discovery of '''[[GH189]]''' builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in [[GH144]] and [[GH162]], which share a common protein fold with '''[[GH189]]''', but have distinct mechansims. ''Check out the '''[[GH189]]''', [[GH144]], and [[GH162]] pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!''
 
----
 
----
'''17 January 2011:''' ''Our first news for the new year:'' '''[[User:Peter Reilly|Peter Reilly]]''' has just completed and approved the '''[[Glycoside Hydrolase Family 44]]''' page.  '''[[GH44]]''' is another classic cellulase family (formerly known as [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134435/ ''cellulase family J'']); a number of these endo-beta(1-4)-glucanases have a penchant for degrading xyloglucan as well as soluble synthetic cellulose derivatives.
+
'''4 January 2024:''' ''CBM99, CBM100 and CBM101 in one fell swoop!'' Three new CBM families have been added to the ''CAZypedia'' repertoire. Though the families differ in their glycan targets, they share the interesting function of binding to highly complex sulfated marine polymers. '''[[User:Yaoguang Chang|Yaoguang Chang]]''' acted as [[Responsible Curator]] on all three pages. '''[[User:Xuanwei Mei|Xuanwei Mei]]''' [[author]]ed the [[CBM99]] and [[CBM101]] red algal specific pages and '''[[User:Guanchen Liu|Guanchen Liu]]''' authored the [[CBM100]] glycosaminoglycan specific page. ''Learn more about [[CBM99]], [[CBM100]] and [[CBM101]] on their respective pages!''  
 +
 
 
----
 
----
'''29 October 2010:''' ''News from sunny Provence:'' '''[[User:Florence Vincent|Florence Vincent]]''' has completed the '''[[Glycoside Hydrolase Family 73]]''' page, which has just been edited and [[Curator Approved|approved]] by [[Board of Curators|Senior Curator]] '''[[User:Bernard Henrissat|Bernard Henrissat]]'''. '''[[GH73]]''' contains peptidoglycan hydrolases with endo-β-N-acetylglucosaminidase (NAG, a.k.a. GlcNAc) specificity.  Mechanistic and structural parallels between this family and other hexosaminidase families have been drawn, including '''[[GH18]]''', whose ''CAZypedia'' page was very recently finished ''(see the preceding News item from Oct. 13)''.
+
'''4 January 2024:''' ''More "Fun" from the sea.'' Today, '''[[User:Yaoguang Chang|Yaoguang Chang]]''' [[Curator Approved]] the '''[[Glycoside Hydrolase Family 187]]''' page [[Author]]ed by '''[[User:Jingjing Shen|Jingjing Shen]]'''. The founding member of '''[[GH187]]''' is the alpha-1,3-L-fucanase ("Fun187A") the marine bacterium ''Wenyingzhuangia aestuarii'', which recognizes a specific sulfated motif in sea cucumber fucans.  '''[[GH187]]''' is a small family (<50 members) and there remains much to elucidate regarding catalytic mechanism and enzyme structure. Interest in CAZymes active on marine biomass continues to grow, and we welcome this expansion in ''CAZypedia''. ''Learn more about '''[[GH187|GH187 here!]]'''''
 +
----
 +
'''17 December 2023:''' ''Redox-assisted glycoside hydrolysis, redux.'' Just before the turn of the new year, '''[[User:Spencer Williams|Spencer Williams]]''' completed the '''[[Glycoside Hydrolase Family 188]]''' page. '''[[GH188]]''' is the latest representative of a growing number of [[Glycoside hydrolases|Glycoside Hydrolase]] families, including [[GH4]], [[GH109]], [[GH177]], and [[GH179]], which use an [[NAD-dependent hydrolysis|NAD-dependent]] oxidation-elimination-addition-reduction cycle to cleave glycosidic bonds. First established ca. 20 years ago in [[GH4]], [[NAD-dependent hydrolysis|this mechanism]] is therefore distinct from the [[Glycoside_hydrolases#Mechanism|canonical Koshland mechanisms]] of glycoside hydrolysis. Notably, because oxidation occurs at C-3 of the sugar ring, followed by elimination at C-1, these enzymes can cleave both alpha- and beta-glycosides! Recently, [[User:Spencer Williams|Spencer]], [[User:Ethan Goddard-Borger|Ethan Goddard-Borger]], and [[User:Gideon Davies|Gideon Davies]] showed that [[NAD-dependent hydrolysis]] also extends to sulfoquinovoside hydrolysis by bacterial '''[[GH188]]''' members, complementing canonical sulfoquinovosidases in [[GH31]]. ''Read more about these remarkable enzymes '''[[GH188|here!]]'''''  
 +
----
 +
'''16 August 2023:''' ''An oldie but a goodie.'' The page for '''[[CBM9]]''', one of the original founding top 10 [[Carbohydrate Binding Module Families]], has been completed by '''[[User:Johan Larsbrink|Johan Larsbrink]]''', who multitasked as both [[Author]] and [[Responsible Curator]]. '''[[CBM9]]''' members are often found in ultra-multimodular, xylan deconstructing, bacterial enzymes, and their cellulose-binding functionality has been exploited as affinity tags in recombinant protein purifications. ''Read more on this historically important [[Carbohydrate-binding modules|CBM]] family '''[[CBM9|here]]'''!''
 
----
 
----

Revision as of 19:00, 24 February 2024

11 February 2024: A "BLAST" from the past, with a fresh update. Author Eduardo Moreno Prieto composed a new page on Glycoside Hydrolase Family 119,a family of bacterial amylases, which was Curator Approved by Stefan Janecek and Bernard Henrissat today. The first member of GH119 was characterized in 2006, and through sequence analysis with GH57 members, Janeček and Kuchtová predicted the active-site residues in 2012. Over a decade later, Eduardo, Bernard, and colleagues finally provided critical experimental support for these predictions. Learn more about this history, and especially the relationship between GH119 and GH57, in CAZypedia.


3 February 2024: A new family of beta-1,2-glucan-cyclizing enzymes. A page on the (currently) newest GH family, Glycoside Hydrolase Family 189, was completed today by Authors Tomoko Masaike, Masahiro Nakajima, and Nobukiyo Tanaka (Masahiro Nakajima is the Responsible Curator). GH189 is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules. The discovery of GH189 builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in GH144 and GH162, which share a common protein fold with GH189, but have distinct mechansims. Check out the GH189, GH144, and GH162 pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!


4 January 2024: CBM99, CBM100 and CBM101 in one fell swoop! Three new CBM families have been added to the CAZypedia repertoire. Though the families differ in their glycan targets, they share the interesting function of binding to highly complex sulfated marine polymers. Yaoguang Chang acted as Responsible Curator on all three pages. Xuanwei Mei authored the CBM99 and CBM101 red algal specific pages and Guanchen Liu authored the CBM100 glycosaminoglycan specific page. Learn more about CBM99, CBM100 and CBM101 on their respective pages!


4 January 2024: More "Fun" from the sea. Today, Yaoguang Chang Curator Approved the Glycoside Hydrolase Family 187 page Authored by Jingjing Shen. The founding member of GH187 is the alpha-1,3-L-fucanase ("Fun187A") the marine bacterium Wenyingzhuangia aestuarii, which recognizes a specific sulfated motif in sea cucumber fucans. GH187 is a small family (<50 members) and there remains much to elucidate regarding catalytic mechanism and enzyme structure. Interest in CAZymes active on marine biomass continues to grow, and we welcome this expansion in CAZypedia. Learn more about GH187 here!


17 December 2023: Redox-assisted glycoside hydrolysis, redux. Just before the turn of the new year, Spencer Williams completed the Glycoside Hydrolase Family 188 page. GH188 is the latest representative of a growing number of Glycoside Hydrolase families, including GH4, GH109, GH177, and GH179, which use an NAD-dependent oxidation-elimination-addition-reduction cycle to cleave glycosidic bonds. First established ca. 20 years ago in GH4, this mechanism is therefore distinct from the canonical Koshland mechanisms of glycoside hydrolysis. Notably, because oxidation occurs at C-3 of the sugar ring, followed by elimination at C-1, these enzymes can cleave both alpha- and beta-glycosides! Recently, Spencer, Ethan Goddard-Borger, and Gideon Davies showed that NAD-dependent hydrolysis also extends to sulfoquinovoside hydrolysis by bacterial GH188 members, complementing canonical sulfoquinovosidases in GH31. Read more about these remarkable enzymes here!


16 August 2023: An oldie but a goodie. The page for CBM9, one of the original founding top 10 Carbohydrate Binding Module Families, has been completed by Johan Larsbrink, who multitasked as both Author and Responsible Curator. CBM9 members are often found in ultra-multimodular, xylan deconstructing, bacterial enzymes, and their cellulose-binding functionality has been exploited as affinity tags in recombinant protein purifications. Read more on this historically important CBM family here!