CAZypedia needs your help! We have many unassigned GH, PL, CE, AA, GT, and CBM pages in need of Authors and Responsible Curators.
Scientists at all career stages, including students, are welcome to contribute to CAZypedia. Read more here, and in the 10th anniversary article in Glycobiology.
New to the CAZy classification? Read this first.
*
Consider attending the 15th Carbohydrate Bioengineering Meeting in Ghent, 5-8 May 2024.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
 
(333 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''23 February 2015:''' ''The sites that bind us:'' '''[[User:Birte Svensson| Birte Svensson]]''' and '''[[User:Darrell Cockburn| Darrell Cockburn]]''' have completed the '''[[Surface Binding Site]]''' page within the CAZypedia Lexicon. Surface binding sites are substrate binding regions found on the catalytic domain of carbohydrate active enzymes and appear to play complementary roles to carbohydrate binding modules in facilitating the action of polysaccharide degrading glycoside hydrolases. ''Read more about these intriguing features here [[Surface Binding Site|here]].''
+
'''11 February 2024:''' ''A "BLAST" from the past, with a fresh update.'' [[Author]] '''[[User:Eduardo Moreno Prieto|Eduardo Moreno Prieto]]''' composed a new page on '''[[Glycoside Hydrolase Family 119]]''',a family of bacterial amylases, which was [[Curator Approved]] by '''[[User:Stefan Janecek|Stefan Janecek]]''' and '''[[User:Bernard Henrissat|Bernard Henrissat]]''' today.  The first member of '''[[GH119]]''' was characterized in 2006, and through sequence analysis with [[GH57]] members, [[User:Stefan Janecek|Janeček]] and Kuchtová predicted the active-site residues in 2012.  Over a decade later, '''[[User:Eduardo Moreno Prieto|Eduardo]]''', '''[[User:Bernard Henrissat|Bernard]]''', and colleagues finally provided critical experimental support for these predictions.  ''Learn more about this history, and especially the relationship between '''[[GH119]]''' and '''[[GH57]]''', in CAZypedia.''
 
+
----
 +
'''3 February 2024:''' ''A new family of beta-1,2-glucan-cyclizing enzymes.'' A page on the (currently) newest GH family, '''[[Glycoside Hydrolase Family 189]]''', was completed today by [[Author]]s '''[[User:Tomoko Masaike|Tomoko Masaike]]''', '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''', and '''[[User:Nobukiyo Tanaka|Nobukiyo Tanaka]]''' ([[User:Masahiro Nakajima|Masahiro Nakajima]] is the [[Responsible Curator]]). '''[[GH189]]''' is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules. The discovery of '''[[GH189]]''' builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in [[GH144]] and [[GH162]], which share a common protein fold with '''[[GH189]]''', but have distinct mechansims. ''Check out the '''[[GH189]]''', [[GH144]], and [[GH162]] pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!''
 
----
 
----
 +
'''4 January 2024:''' ''CBM99, CBM100 and CBM101 in one fell swoop!'' Three new CBM families have been added to the ''CAZypedia'' repertoire. Though the families differ in their glycan targets, they share the interesting function of binding to highly complex sulfated marine polymers. '''[[User:Yaoguang Chang|Yaoguang Chang]]''' acted as [[Responsible Curator]] on all three pages. '''[[User:Xuanwei Mei|Xuanwei Mei]]''' [[author]]ed the [[CBM99]] and [[CBM101]] red algal specific pages and '''[[User:Guanchen Liu|Guanchen Liu]]''' authored the [[CBM100]] glycosaminoglycan specific page. ''Learn more about [[CBM99]], [[CBM100]] and [[CBM101]] on their respective pages!''
  
'''19 January 2015:'''  ''Still in the high 70's today:'' '''[[User:Zui Fujimoto|Zui Fujimoto]]''' brought the '''[[Glycoside Hydrolase Family 78]]''' page up to [[Curator Approved]] status today, making it ''CAZypedia's'' 97th approved GH page. '''[[GH78]]''' is a family of archaeal, bacterial, and fungal alpha-L-rhamnosidases that cleave diverse flavonoid glycosides, polysaccharides, glycoproteins, and glycolipids from plants.  ''Read more on these ecologically relevant enzymes [[Glycoside Hydrolase Family 78|here]].''
 
 
----
 
----
'''7 January 2015:''' ''Love your guts:'' ''CAZypedia'' is ringing in the new year with a new '''[[Glycoside Hydrolase Family 76]]''' page by '''[[User:Spencer Williams|Spencer Williams]]'''.  '''[[GH76]]''' contains endo-acting α-mannanases, including members from the human gut bacterium ''Bacteroides thetaiotaomicron'' that enable us to degrade yeast mannans in our diet.  A very recent publication in ''Nature'', notably involving ''CAZypedia'' contributors '''[[User:Michael Suits|Michael Suits]]''', '''[[User:Al Boraston|Al Boraston]]''', '''[[User:Spencer Williams|Spencer Williams]]''', '''[[User:Gideon Davies|Gideon Davies]]''', '''[[User:Wade Abbott|Wade Abbott]]''', and '''[[User:Harry Gilbert|Harry Gilbert]]''', has recently shed new light on the structure, mechanism, and biological function of these enzymes. ''Read more [[Glycoside Hydrolase Family 76|here]]!''
+
'''4 January 2024:''' ''More "Fun" from the sea.'' Today, '''[[User:Yaoguang Chang|Yaoguang Chang]]''' [[Curator Approved]] the '''[[Glycoside Hydrolase Family 187]]''' page [[Author]]ed by '''[[User:Jingjing Shen|Jingjing Shen]]'''. The founding member of '''[[GH187]]''' is the alpha-1,3-L-fucanase ("Fun187A") the marine bacterium ''Wenyingzhuangia aestuarii'', which recognizes a specific sulfated motif in sea cucumber fucans.  '''[[GH187]]''' is a small family (<50 members) and there remains much to elucidate regarding catalytic mechanism and enzyme structure. Interest in CAZymes active on marine biomass continues to grow, and we welcome this expansion in ''CAZypedia''. ''Learn more about '''[[GH187|GH187 here!]]'''''
 
----
 
----
'''11 September 2014:''' ''Another PL family done:'' Today, '''[[User:Richard McLean|Richard McLean]]''' and '''[[User:Wade Abbott|Wade Abbott]]''' finished the '''[[Polysaccharide Lyase Family 22]]''' page, bringing the number of [[Curator Approved]] [[PL]] pages in ''CAZypedia'' to a total of 5 (of 23). '''[[PL22]]''' is a family of bacterial (and a handful of archeal) oligogalacturonide lyases (OGLs), archetypal members of which are highly specific for digalacturonate and &Delta;4,5-unsaturated digalacturonate ''i.e.'', they do not cleave polymeric &alpha;-(1,4)-linked galacturonan, a component of pectin. [[User:Wade Abbott|Wade]] performed a seminal crystallographic analysis of [[PL22]], and he and [[User:Richard McLean|Richard]] have produced a lucid distillation of the mechanism of catalysis in this family. ''Read more [[Polysaccharide Lyase Family 22|here]]!''
+
'''17 December 2023:''' ''Redox-assisted glycoside hydrolysis, redux.'' Just before the turn of the new year, '''[[User:Spencer Williams|Spencer Williams]]''' completed the '''[[Glycoside Hydrolase Family 188]]''' page. '''[[GH188]]''' is the latest representative of a growing number of [[Glycoside hydrolases|Glycoside Hydrolase]] families, including [[GH4]], [[GH109]], [[GH177]], and [[GH179]], which use an [[NAD-dependent hydrolysis|NAD-dependent]] oxidation-elimination-addition-reduction cycle to cleave glycosidic bonds. First established ca. 20 years ago in [[GH4]], [[NAD-dependent hydrolysis|this mechanism]] is therefore distinct from the [[Glycoside_hydrolases#Mechanism|canonical Koshland mechanisms]] of glycoside hydrolysis. Notably, because oxidation occurs at C-3 of the sugar ring, followed by elimination at C-1, these enzymes can cleave both alpha- and beta-glycosides! Recently, [[User:Spencer Williams|Spencer]], [[User:Ethan Goddard-Borger|Ethan Goddard-Borger]], and [[User:Gideon Davies|Gideon Davies]] showed that [[NAD-dependent hydrolysis]] also extends to sulfoquinovoside hydrolysis by bacterial '''[[GH188]]''' members, complementing canonical sulfoquinovosidases in [[GH31]]. ''Read more about these remarkable enzymes '''[[GH188|here!]]'''''  
 
----
 
----
'''9 September 2014:''' ''2-for-1 Back to School Special:'' With the start of the new academic year, we are happy to report that two new [[Polysaccharide Lyase Families|Polysaccharide Lyase Family]] pages have recently been completed and given [[Curator Approved]] status.  In August, '''[[User:Naotake Konno|Naotake Konno]]''' and '''[[User:Shinya Fushinobu|Shinya Fushinobu]]''' produced the '''[[Polysaccharide Lyase Family 20]]''' page, which describes this small (currently, 18 member) group of bacterial and fungal beta-(1-4)-glucuronan-cleaving enzymes. ''And'', on the 7th of this month, '''[[User:Sine Larsen|Sine Larsen]]''' and '''[[User:Leila LoLeggio|Leila LoLeggio]]''' composed the '''[[Polysaccharide Lyase Family 4]]''' page.  Currently, '''[[PL4]]''' is only known to contain rhamnogalacturonan lyases involved in pectin degradation, notably including many plant sequences in addition to bacterial and fungal members.  We thank these [[Author]]s and [[Responsible Curator]]s for their contributions and encourage our readers to check out these new pages.
+
'''16 August 2023:''' ''An oldie but a goodie.'' The page for '''[[CBM9]]''', one of the original founding top 10 [[Carbohydrate Binding Module Families]], has been completed by '''[[User:Johan Larsbrink|Johan Larsbrink]]''', who multitasked as both [[Author]] and [[Responsible Curator]]. '''[[CBM9]]''' members are often found in ultra-multimodular, xylan deconstructing, bacterial enzymes, and their cellulose-binding functionality has been exploited as affinity tags in recombinant protein purifications. ''Read more on this historically important [[Carbohydrate-binding modules|CBM]] family '''[[CBM9|here]]'''!''  
 
----
 
----

Latest revision as of 19:00, 24 February 2024

11 February 2024: A "BLAST" from the past, with a fresh update. Author Eduardo Moreno Prieto composed a new page on Glycoside Hydrolase Family 119,a family of bacterial amylases, which was Curator Approved by Stefan Janecek and Bernard Henrissat today. The first member of GH119 was characterized in 2006, and through sequence analysis with GH57 members, Janeček and Kuchtová predicted the active-site residues in 2012. Over a decade later, Eduardo, Bernard, and colleagues finally provided critical experimental support for these predictions. Learn more about this history, and especially the relationship between GH119 and GH57, in CAZypedia.


3 February 2024: A new family of beta-1,2-glucan-cyclizing enzymes. A page on the (currently) newest GH family, Glycoside Hydrolase Family 189, was completed today by Authors Tomoko Masaike, Masahiro Nakajima, and Nobukiyo Tanaka (Masahiro Nakajima is the Responsible Curator). GH189 is a family of bacterial transglycosylases that comprise a critical domain in cyclic beta-1,2-glucan synthase (CGS), because this domain is responsible for the final cyclization step during the biosynthesis of these key effector molecules. The discovery of GH189 builds on similarly exciting work by these authors and their colleagues on beta-1,2-glucan hydrolases in GH144 and GH162, which share a common protein fold with GH189, but have distinct mechansims. Check out the GH189, GH144, and GH162 pages to learn more about this breakthrough work on beta-1,2-glucan-active enzymes!


4 January 2024: CBM99, CBM100 and CBM101 in one fell swoop! Three new CBM families have been added to the CAZypedia repertoire. Though the families differ in their glycan targets, they share the interesting function of binding to highly complex sulfated marine polymers. Yaoguang Chang acted as Responsible Curator on all three pages. Xuanwei Mei authored the CBM99 and CBM101 red algal specific pages and Guanchen Liu authored the CBM100 glycosaminoglycan specific page. Learn more about CBM99, CBM100 and CBM101 on their respective pages!


4 January 2024: More "Fun" from the sea. Today, Yaoguang Chang Curator Approved the Glycoside Hydrolase Family 187 page Authored by Jingjing Shen. The founding member of GH187 is the alpha-1,3-L-fucanase ("Fun187A") the marine bacterium Wenyingzhuangia aestuarii, which recognizes a specific sulfated motif in sea cucumber fucans. GH187 is a small family (<50 members) and there remains much to elucidate regarding catalytic mechanism and enzyme structure. Interest in CAZymes active on marine biomass continues to grow, and we welcome this expansion in CAZypedia. Learn more about GH187 here!


17 December 2023: Redox-assisted glycoside hydrolysis, redux. Just before the turn of the new year, Spencer Williams completed the Glycoside Hydrolase Family 188 page. GH188 is the latest representative of a growing number of Glycoside Hydrolase families, including GH4, GH109, GH177, and GH179, which use an NAD-dependent oxidation-elimination-addition-reduction cycle to cleave glycosidic bonds. First established ca. 20 years ago in GH4, this mechanism is therefore distinct from the canonical Koshland mechanisms of glycoside hydrolysis. Notably, because oxidation occurs at C-3 of the sugar ring, followed by elimination at C-1, these enzymes can cleave both alpha- and beta-glycosides! Recently, Spencer, Ethan Goddard-Borger, and Gideon Davies showed that NAD-dependent hydrolysis also extends to sulfoquinovoside hydrolysis by bacterial GH188 members, complementing canonical sulfoquinovosidases in GH31. Read more about these remarkable enzymes here!


16 August 2023: An oldie but a goodie. The page for CBM9, one of the original founding top 10 Carbohydrate Binding Module Families, has been completed by Johan Larsbrink, who multitasked as both Author and Responsible Curator. CBM9 members are often found in ultra-multimodular, xylan deconstructing, bacterial enzymes, and their cellulose-binding functionality has been exploited as affinity tags in recombinant protein purifications. Read more on this historically important CBM family here!