New to the CAZy classification? Read this first.
Want to learn more about CAZypedia? Read the CAZypedia 10th anniversary article in Glycobiology.

User:Daniel Kracher

From CAZypedia
Jump to: navigation, search
DKracher.png


I was born and raised in the south of Austria (Fürstenfeld) but moved to Vienna to study Food and Biotechnology at the BOKU University.

I obtained both my Master and Ph.D. in the group of Roland Ludwig (-> link), where I focused on the biochemical investigation of fungal redox-enzymes and their application in biocatalysis and biorefinery [1, 2]. In particular, I studied the kinetics and electron transfer reactions of fungal cellobiose dehydrogenases (CDH), and their involvement in lignocellulose degradation [3, 4, 5, 6].

The activation of lytic polysaccharide monooxygenases by CDH later became a central point of my research [7, 8].

Since April 2018 I am working at the Manchester Institute of Biotechnology (MIB) in Prof. Nigel Scrutton`s group.



  1. Kracher D, Oros D, Yao W, Preims M, Rezic I, Haltrich D, Rezic T, and Ludwig R. (2014) Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J. 9, 483-92. DOI:10.1002/biot.201300214 | PubMed ID:24677771 | HubMed [Kracher2014]
  2. Mulla D, Kracher D, Ludwig R, Nagy G, Grandits M, Holzer W, Saber Y, Gabra N, Viernstein H, and Unger FM. (2013) Azido derivatives of cellobiose: oxidation at C1 with cellobiose dehydrogenase from Sclerotium rolfsii. Carbohydr Res. 382, 86-94. DOI:10.1016/j.carres.2013.09.004 | PubMed ID:24211370 | HubMed [Kracher2013]
  3. Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AK, Harreither W, Kittl R, and Ludwig R. (2012) Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol. 78, 6161-71. DOI:10.1128/AEM.01503-12 | PubMed ID:22729546 | HubMed [Kracher2012]
  4. Kracher D, Zahma K, Schulz C, Sygmund C, Gorton L, and Ludwig R. (2015) Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations. FEBS J. 282, 3136-48. DOI:10.1111/febs.13310 | PubMed ID:25913436 | HubMed [Kracher2015]
  5. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, and Divne C. (2015) Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun. 6, 7542. DOI:10.1038/ncomms8542 | PubMed ID:26151670 | HubMed [Kracher2015b]
  6. Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, Kracher D, and Ludwig R. (2017) Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb Cell Fact. 16, 37. DOI:10.1186/s12934-017-0653-5 | PubMed ID:28245812 | HubMed [Ma2017]
  7. Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, and Ludwig R. (2016) Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 352, 1098-101. DOI:10.1126/science.aaf3165 | PubMed ID:27127235 | HubMed [Kracher2016]
  8. Kracher D, Andlar M, Furtmüller PG, and Ludwig R. (2018) Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. J Biol Chem. 293, 1676-1687. DOI:10.1074/jbc.RA117.000109 | PubMed ID:29259126 | HubMed [Kracher2018]
All Medline abstracts: PubMed | HubMed