New to the CAZy classification? Read this first.

Main Page

From CAZypedia
Revision as of 09:39, 28 November 2016 by Harry Brumer (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Welcome to CAZypedia!
The Living Encyclopedia of Carbohydrate-Active Enzymes.
Cazypedia logo big.png

Purpose

CAZypedia has been initiated as a community-driven resource to assemble a comprehensive encyclopedia of the "CAZymes," the carbohydrate-active enzymes and associated carbohydrate-binding modules involved in the synthesis and degradation of complex carbohydrates. CAZypedia is inspired by, and closely connected with, the actively curated CAZy Database. It's probably fair to say that CAZypedians are, like our friends at the CAZy DB, a group of "biocurators."
If you are new to the CAZyme classification, "Sorting the Diverse" by Professors Gideon Davies and Michael Sinnott (The Biochemist, 2008, vol. 30, part 4, pp. 26-32) provides an excellent historical introduction.

Content

CAZypedia initially focussed on the Glycoside Hydrolase Families defined in the CAZy Database, and we continue to strive for complete coverage of this diverse class of enzymes. Other catabolic and anabolic CAZymes (e.g. Polysaccharide Lyases and Glycosyltransferases), as well as Auxiliary redox enzymes and non-catalytic Carbohydrate Binding Modules, continue to be incorporated as interest and engagement from the scientific community grows. In addition, there is a Lexicon of terms relevant to CAZymes and carbohydrate chemistry.
These and other aspects of CAZypedia's content can be accessed through the menus on the left side of each page.

How CAZypedia works

CAZypedia is built on authoring and editing principles similar to those of other expert-based online encyclopedias (cf. Citizendium, Scholarpedia). All contributors to CAZypedia, from the Authors to the Board of Curators, are experts in the field. Transparency is achieved through the use of contributors' real names and published biographies in CAZypedia. Individual entries in CAZypedia are managed by Responsible Curators, who are responsible for selecting expert Authors and coordinating author contributions on individual pages. Selection of Responsible Curators, based on their specialist expertise and ability to participate in the active maintenance of entry content, is handled by the Senior Curators.
More information on CAZypedia's content and editorial policies is available here.
A short lecture and a set of slides presenting CAZypedia are freely available here.

Contact

If you would like to contact the Board of Curators to get involved with CAZypedia or suggest an improvement, please use this form.

Latest news

10 September 2017: Sussing-out starch recognition in CBM58: We are excited to report that Nicole Koropatkin has completed the Carbohydrate Binding Module Family 58 page today. CBM58 constitutes a comparatively small family of CBMs found in bacteria in the phylum Bacteroidetes, including key members of the human gut microbiota such as Bacteroides thetaiotaomicron. Within these bacteria, CBM58 modules are found inserted within the GH13 catalytic module of SusG, the essential outer-membrane-bound amylase of the starch utilization system (sus). Nicole’s seminal structural biology has defined the family and provided insight into the recognition of amylose helices by CBM58 members in SusG homologs. Read more about this fascinating system here.

10 April 2017: A classic GH family: The Glycoside Hydrolase Family 22 page was completed today by Spencer Williams, with editorial input from Responsible Curator David Vocadlo. GH22 contains the classic bacterial peptidoglycan hydrolase, hen egg-white lysozyme (HEWL), the first enzyme for which the three-dimensional structure was solved (reported in 1965). Moreover, seminal enzyme-carbohydrate complex structures have made HEWL a paradigm for glycosidases that operate through the classical Koshland retaining mechanism. Although the nature of the reaction intermediate remained contentious for many years since the original proposal of an oxacarbenium ion-carboxylate pair, a definitive study by Vocadlo, Davies, Laine, and Withers resolved the covalent nature of the glycosyl-enzyme HEWL in 2001, thus bringing mechanistic understanding of this classic enzyme in concordance with other retaining GH families. The lysozyme fold of HEWL defines the archetype for other hexosaminidases (i.e. those of GH19 and GH23) and the non-catalytic alpha-lactalbumins, and this fold notably has also been observed in recently emergent families of cellulases (GH124) and mannanases (GH134). Find out more about this classic GH family here!


> older news

Dedication

CAZypedia is dedicated to the late Prof. Bruce Stone, whose enthusiasm to create a comprehensive encyclopedia of carbohydrate-active enzymes was essential in the genesis of this project.
Personal tools
Namespaces

Variants
Actions
About CAZypedia
Content
For contributors
Tools