New to the CAZy classification? Read this first.
Want to learn more about CAZypedia? Read the CAZypedia 10th anniversary article in Glycobiology.

Main Page

From CAZypedia
Jump to: navigation, search
Welcome to CAZypedia!
The Living Encyclopedia of Carbohydrate-Active Enzymes.
Cazypedia logo big.png

Purpose

CAZypedia has been initiated as a community-driven resource to assemble a comprehensive encyclopedia of the "CAZymes," the carbohydrate-active enzymes and associated carbohydrate-binding modules involved in the synthesis and degradation of complex carbohydrates. CAZypedia is inspired by, and closely connected with, the actively curated CAZy Database. It's probably fair to say that CAZypedians are, like our friends at the CAZy DB, a group of "biocurators."
If you are new to the CAZyme classification, "Sorting the Diverse" by Professors Gideon Davies and Michael Sinnott (The Biochemist, 2008, vol. 30, part 4, pp. 26-32) provides an excellent historical introduction.

Content

CAZypedia initially focussed on the Glycoside Hydrolase Families defined in the CAZy Database, and we continue to strive for complete coverage of this diverse class of enzymes. Other catabolic and anabolic CAZymes, as well as Auxiliary redox enzymes and non-catalytic Carbohydrate Binding Modules, continue to be incorporated as interest and engagement from the scientific community grows. In addition, there is a Lexicon of terms relevant to CAZymes and carbohydrate chemistry.
These and other aspects of CAZypedia's content can be accessed through the menus on the left side of each page.

How CAZypedia works

CAZypedia is built on authoring and editing principles similar to those of other expert-based online encyclopedias (cf. Citizendium, Scholarpedia). All contributors to CAZypedia, from the Authors to the Board of Curators, are experts in the field. Transparency is achieved through the use of contributors' real names and published biographies in CAZypedia. Individual entries in CAZypedia are managed by Responsible Curators, who are responsible for selecting expert Authors and coordinating author contributions on individual pages. Selection of Responsible Curators, based on their specialist expertise and ability to participate in the active maintenance of entry content, is handled by the Senior Curators.
More information on CAZypedia's content and editorial policies is available here.
A short lecture and a set of slides presenting CAZypedia are freely available here.
An article describing CAZypedia's genesis and evolution has been published in the journal Glycobiology.

Contact

If you would like to get involved with CAZypedia or suggest an improvement, please contact the Board of Curators.

Latest news

14 May 2019: Starch... it's not over yet: Two new families of starch-binding CBMs, CBM82 and CBM83, have joined the CAZypedia ranks. These CBMs are both found in an enormous multi-modular cell-wall anchored enzyme from a gut bacterium. The pages were both authored by Darrell Cockburn with Nicole Koropatkin acting as responsible curator. Learn more about the new starch-binding CBM82 and CBM83 families on their respective pages.

28 February 2019: CE9 is CE page #2!: Graduate student Alex Anderson has completed CAZypedia's second Carbohydrate Esterase (CE) family page, Carbohydrate Esterase Family 9, which was Curator Approved by his supervisor Michael Suits today. CE9 enzymes are metal-dependent N-acetylglucosamine 6-phosphate deacetylases that function in peptidoglycan recycling in bacteria. CE9 is a huge family, currently comprising over 10,000 members (nearly all are from bacteria), which underscores their biological importance. Alex and Mike completed CAZypedia's first CE family page, CE4 earlier this month, and we thank them for these seminal expansions of of our resource. Learn more about the structure and mechanism of metal-dependent deamidases here: CE9, CE4.


22 February 2019: Starch-active LPMOs: Glyn Hemsworth recently completed the Auxiliary Activity Family 13 page, which was Curator Approved by Responsible Curator Gideon Davies today. AA13 was first identified in 2014 and is notable as the first lytic polysaccharide mono-oxygenase (LPMO) family that is active on alpha-glycosidic bonds, viz. those in amylose (starch). Overall, LPMOs are an intriguing group of copper-dependent oxidases that open-up insoluble polysaccharide substrates for increased attack by glycoside hydrolases. Read more about AA13 and related beta-glycan-active LPMOs (AA9, AA10, AA11, AA14, & AA15) on their respective CAZypedia pages and at the CAZy Database.


4 February 2019: CAZypedia's first CE page! Today Responsible Curator Michael Suits approved the Carbohydrate Esterase Family 4 page authored by graduate student Alex Anderson, thereby marking a new milestone CAZypedia's history. Carbohydrate Esterases (CEs) catalyze the de-O-acylation or de-N-acylation of saccharides (the latter are formally amidases), and CE4 contains members with either activity, e.g. acetylxylan esterases and peptidoglycan deacetylases. CE4 members thus play diverse biological roles in nature. Learn more about the structure and mechanism of these metal-dependent de-acylases here.


27 November 2018: Remember, remember... an end of November new CAZypedia CBM family page. The type C L-rhamnose binding CBM67 family is now on-line in CAZypedia. Satoshi Kaneko authored the page and Harry Gilbert acted as responsible curator. Learn more about the structure and function of the CBM67 family on its CAZypedia page.


23 November 2018: Welcome to the CAZypedia fold CBM49! The crystalline cellulose-binding CBM49 CAZypedia page was authored by Breeanna Urbanowicz and Elizabeth Ficko-Blean. Breeanna Urbanowicz also acted as responsible curator. There is experimental evidence that rice CBM49 is cleaved post-translationally in vivo which probably plays an important role in plant growth. Find out more about the functionally interesting family 49 CBMs here.


> older news

Dedication

CAZypedia is dedicated to the late Prof. Bruce Stone, whose enthusiasm to create a comprehensive encyclopedia of carbohydrate-active enzymes was essential in the genesis of this project.